Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích đa thức thành nhân tử ( phương pháp dùng hằng đẳng thức )
3) x6 - y6
= (x3)2 - (y3)2
= (x3 - y3).(x3 + y3)
b) \(64x^3+1=\left(4x+1\right)\left(16x^2-4x+1\right)\)\
c) \(x^3y^6z^9-125=\left(xy^2z^3-5\right)\left(x^2y^4z^6+5xy^2z+25\right)\)
d) \(27x^6-8x^3=x^3\left(27x^3-8\right)=x^3\left(3x-2\right)\left(9x^2+6x+4\right)\)
e) \(x^6-y^6=\left(x^3-y^3\right)\left(x^3+y^3\right)=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
64x3 + 1
= ( 4x )3 + 1
= ( 4x + 1 ) ( 16x2 - 4x + 1 )
Hằng đẳng thức 6 : A3 + B3
27x6 - 8x3
= ( 3x2)3 + ( 2x )3
= ( 3x + 2x ) ( 9x2 - 6x + 4x2 )
HĐT 6
x6 - y6
= ( x2 )3 - ( y2 )3
= ( x2 - y2 ) ( x4 + x2y2 + y4 )
HĐT 7 : A3 - B3
x3y6z9 + 1
= ( xy2z3)3 + 1
= ( xy2z3 + 1 ) ( x2y4z6 + zy2z3 + 1 )
HĐT 6
1) \(x^6+1\)
\(=x^6+x^4-x^4+x^2-x^2+1\)
\(=\left(x^6-x^4+x^2\right)+\left(x^4-x^2+1\right)\)
\(=x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
2) \(x^6-y^6\)
\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(a)8x^6-27y^3=\left(2x^2\right)^3-\left(3y\right)^3=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)
\(b)\left(x+3\right)^3-8=\left(x+3\right)^3-2^3\)
\(=\left(x+3-2\right)\left[\left(x+3\right)^2+2\left(x+3\right)+4\right]\)
\(=\left(x+1\right)\left(x^2+6x+9+2x+6+4\right)\)
\(=\left(x+1\right)\left(x^2+8x+19\right)\)
\(c)x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(d)x^3+12x^2+48x+64=x^3+3x^2\cdot4+3x\cdot16+4^3\)
\(=\left(x+4\right)^3\)
\(25-x^2+4xy-4y^2=5^2-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)
\(x^4-4x^3+4x^2=x^2\left(x^2-4x+4\right)=x^2\left(x-2\right)^2\)
\(x^3-x^2-x+1=x^2\left(x-1\right)-\left(x-1\right)=\left(x^2-1\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)^2\)
\(a^5+27a^2=a^2\left(a^3+27\right)=a^2\left(a+3\right)\left(a^2-3a+9\right)\)
\(x^3+3x^2-3x-1=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)=\left(x-1\right)\left(x^2+x+1+3x\right)=\left(x-1\right)\left(x^2+4x+1\right)\)
\(4a^2b^2-\left(a^2+b^2-1\right)^2=\left(2ab+a^2+b^2-1\right)\left(2ab-a^2-b^2+1\right)=\left[\left(a+b\right)^2-1\right]\left[1-\left(a-b\right)^2\right]\)
\(\left(a+b-1\right)\left(a+b+1\right)\left(1+a-b\right)\left(1-a+b\right)\)
4/ a/ Ta có \(x^2-2xy+y^2+a^2=\left(x-y\right)^2+a^2\)
Mà \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\a^2\ge0\end{cases}}\)=> \(\left(x-y\right)^2+a^2\ge0\)
=> \(x^2-2xy+y^2+a^2\ge0\)
Vậy \(x^2-2xy+y^2\)chỉ nhận những giá trị không âm.
b/ Ta có \(x^2+2xy+2y^2+2y+1=\left(x^2+2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x+y\right)^2+\left(y+1\right)^2\)
Mà \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}}\)=> \(\left(x+y\right)^2+\left(y+1\right)^2\ge0\)
=> \(x^2+2xy+2y^2+2y+1\ge0\)
Vậy \(x^2+2xy+2y^2+2y+1\)chỉ nhận những giá trị không âm.
c/ Ta có \(9b^2-6b+4c^2+1=\left(3b-1\right)^2+4c^2\)
Mà \(\hept{\begin{cases}\left(3b-1\right)^2\ge0\\4c^2\ge0\end{cases}}\)=> \(\left(3b-1\right)^2+4c^2\ge0\)
=> \(9b^2-6b+4c^2+1\ge0\)
Vậy \(9b^2-6b+4c^2+1\)chỉ nhận những giá trị không âm.
d/ Ta có \(x^2+y^2+2x+6y+10=\left(x+1\right)^2+\left(y+3\right)^2\)
Mà \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)=> \(\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
=> \(x^2+y^2+2x+6y+10\ge0\)
Vậy \(x^2+y^2+2x+6y+10\)chỉ nhận những giá trị không âm.
1/
a/ \(x^4-y^4=\left(x^2-y^2\right)\)
b/ \(\left(a+b\right)^3-\left(a-b\right)^3=\left(a+b-a+b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2b\left[a^2+2ab+b^2-\left(a^2-b^2\right)+\left(a^2-2ab+b^2\right)\right]\)
\(=2b\left(a^2+b^2\right)\)
c/ \(\left(a^2+2ab+b^2\right)+\left(a+b\right)\)
= \(\left(a+b\right)^2+\left(a+b\right)\)
= \(\left(a+b\right)\left(a+b+1\right)\)
1. \(x^3+9x^2+27x+27=\left(x+3\right)^3\)
2.\(8x^6-27y^3=\left(2x\right)^3-\left(3y\right)^3=\left(2x-3y\right)\)
\(=\left(2x-3y\right)\left(8x^6+6xy+27y^3\right)\)
3.\(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3-y^3\right)\left(x^3+y^3\right)\)4.câu cuối là \(8b^3\)bạn nhé !!
tik mik nhé
a) 4.(2a-b)2-16(a-b)2
= [2(2a-b)]2 - [4(a-b)]2
= [2(2a-b)-4(a-b)].[2(2a-b)+4(a-b)]
= [4a-2b-4a+4b].[4a-2b+4a-4b]
= 2b.(8a-6b)
b) 8x3-27y3
= (2x)3 - (3y)3
= (2x - 3y).[(2x)2+2x.3y+(3y)2]
= (2x-3y)(4x2+6xy+9y2)
c) 1/64x6-125y3
= (1/4x2)3 - (5y)3
= (1/4x2 - 5y)[(1/4x2)2 + 1/4x2.5y + (5y)2]
= (1/4x2 - 5y)(1/16x4 + 5/4x2y +25y2)
d) (x+3)3-8
= (x+3-2)[(x+3)2+(x+3).2+22]
= (x+1)(x2+6x+9+2x+6+4)
= (x+1)(x2+8x+19)
e) x6+1
= (x2)3 + 13
= (x2 + 1)[(x2)2 - x2 + 1]
= (x2 + 1)(x4-x2+1)
g) x9 + 1
= (x3)3 + 13
= (x3 + 1 )[(x3)2 - x6 + 1]
= (x+1)(x2+x+1)(x6-x6+1)
= (x+1)(x2+x+1)
Mình gõ hơi lâu mới làm được nhiêu đó thôi
\(h)x^3+12x^2+48x+64=\left(x+4\right)^3\)
\(i)27-27m+9m^2-m^3=\left(3-m\right)^3\)