Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có \(\frac{n\cdot\left(n-1\right)}{2}\) đường thẳng
Có N điểm trong đó không có điểm nào thẳng hàng và cứ qua 2 điểm ta vẽ 1 đường thẳng nên có tất cả số đường thẳng là :
\(\frac{n\cdot\left(n-1\right)}{2}\)( đường thẳng )
Hok tốt !!!
Với 2 điểm ta xác định một đường thẳng.
Có n cách chọn điểm đầu tiên, với mỗi cách chọn điểm đầu tiên có n-1 cách chọn điểm thứ 2, và có hai cách gọi tên một đường thẳng (ví dụ, AB và BA là một đường thẳng) .
Vây, với n điểm không có 3 điểm nào thẳng hàng ta vẽ được n.(n-1)/2 đường thẳng.
nên n.(n-1)/2 = 378 hay n(n-1)=756. Ta thấy 28.27 = 756, suy ra n = 28.
Ta có \(A=3+3^2+3^3+3^4+....+3^{60}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(=4.3+4.3^3+...+4.3^{59}\)
\(=4.\left(3+3^3+...+3^{59}\right)⋮4\)
\(\Rightarrow A⋮4\)
13 ; 26 ; 52 cũng tương tự nha bạn!!
Bài 2: Có tất cả:
(6 . 5) : 2 = 15 (đường thẳng)
Bài 3: Có 6 điểm như trên bài 2.
Bài 4:Theo đề, ta có:
\(\left[n.\left(n-1\right)\right]:2=21\)
\(n.\left(n-1\right)=42\)
\(n.\left(n-1\right)=6.7\Rightarrow n=6\)
~ Học tốt ~
Đáp án C
Có ba điểm trên hình vẽ là A,B,C.
Có ba đường thẳng trên hình vẽ là AB,AC,BC.