\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2016

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

3 tháng 3 2018

Ta có : 

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=\)\(1-\frac{1}{100}\)

\(=\)\(\frac{99}{100}\)

Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}=\frac{99}{100}\)

Chúc bạn học tốt ~

3 tháng 3 2018

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

                                                              \(=1-\frac{1}{100}=\frac{99}{100}\)

ĐÚNG 100%

                                                               

21 tháng 5 2021

= -101/100

21 tháng 5 2021


\(B=-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{98.99}-\frac{1}{99.100}\\ =-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\\ =-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\\ =-\left(1-\frac{1}{100}\right)=\frac{-99}{100}\)

25 tháng 7 2015

...

= 1/2-1/3+1/3-1/4+...+ 1/19-1/20

= 1/2-1/20

=9/20

có phải như thế này ko bn

25 tháng 7 2015

\(A=\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{19.20}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{19}-\frac{1}{20}=\frac{1}{2}-\frac{1}{20}\)

A = \(\frac{9}{20}\)


\(B=\frac{1}{99.100}-\frac{1}{98.99}-\frac{1}{97.98}-.....-\frac{1}{1.2}=-\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\right)\)

\(B=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)=-\left(1-\frac{1}{100}\right)\)

B = \(-\frac{99}{100}\)

27 tháng 2 2017

Ta có TQ: (phân số đầu - phân số cuối) : khoảng cách
Áp dụng vào bài toán => (\(\frac{1}{1}\)-\(\frac{1}{100}\)) : 1 =\(\frac{99}{100}\)
lý dó 1 là khoảng cách vì cách lm như sau: 2-1=1
                                                                3-2=1
                                                                   .....
                                                                100-99=1
=> khoảng cách là 1
 Chúc bn hk tốt nhé!!

27 tháng 2 2017

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(1-\frac{1}{100}\)

\(\frac{99}{100}\)

25 tháng 4 2017

MÌNH NGHĨ LÀ A< B

21 tháng 3 2020

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{99-98}{98.99}+\frac{100-99}{99.100}\)

\(=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+\frac{5}{4.5}-\frac{4}{4.5}+...+\frac{99}{98.99}-\frac{98}{98.99}+\frac{100}{99.100}-\frac{99}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

4 tháng 4 2020

Cảm ơn bạn

13 tháng 2 2016

Làm tiếp

A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...........+\frac{1}{99}-\frac{1}{100}\)

A=\(1-\frac{1}{100}\)

A=\(\frac{100}{100}-\frac{1}{100}\)

A=\(\frac{99}{100}\)

13 tháng 2 2016

A= 2-1/1.2 + 3-2/2.3 + 4-3/3.4 +...+ 99-98/98.99 + 100-99/99.100

A= 2/1.2 - 1/1.2 + 3/2.3 - 2/2.3 + 4/3.4 - 3/3.4 +...+ 99/98.99 - 98/98.99 + 100/99.100 - 99/99.100

A= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/98 - 1/99 + 1/99 - 1/100

A= 1 - 1/100

A= 99/100

7 tháng 8 2016

mk làm tắt dc ko

7 tháng 8 2016

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)