\(0,2g/cm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2019

Đáp án đúng : C

11 tháng 3 2019

27 tháng 2 2017

25 tháng 4 2024

tính E(300)=300/log2(300), E(90000)=90000/log2(90000)

Vì độ hiệu quả tỉ lệ thuận với thời gian thực hiện

nên ta có tỉ số 0,02/E(300)=x/E(90000) (x là giá trị cần tìm).

Từ đó tính được x=3

26 tháng 3 2016

\(y'=3x^2-6\left(m+1\right)x+9\)

Để hàm số có cực đại và cực tiểu :

\(\Delta'=9\left(m+1\right)^2-3.9>0\Leftrightarrow m\in\left(-\infty;-1-\sqrt{3}\right)\cup\left(-1+\sqrt{3};+\infty\right)\)

Ta có \(y=\left(\frac{1}{3}x-\frac{m+1}{3}\right)\left(3x^2-6\left(m+1\right)x+9\right)-2\left(m^2+2m-2\right)x+4m+1\)

vậy đường thẳng đi qua 2 điểm cực đại và cực tiểu là \(y=-2\left(m^2+2m-2\right)x+4m+1\)

Vì 2 điểm cực đại và cực tiểu đối xứng qua đường thẳng \(y=\frac{1}{2}x\), ta có điêu kiện cần là 

\(\left[-2\left(m^2+2m-2\right)\right]\frac{1}{2}=-1\Leftrightarrow m^2+2m-3=0\)

\(\Leftrightarrow\begin{cases}m=1\\m=-3\end{cases}\)

Khi m=1 phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là y=-2x+5. Tọa độ trung điểm cực đại và cực tiểu là 

\(\begin{cases}\frac{x_1+x_2}{2}=\frac{4}{2}=2\\\frac{y_1+y_2}{2}=\frac{-2\left(x_1+x_2\right)+10}{2}=1\end{cases}\)

Tọa độ trung điểm cực đại và cực tiể là (2;1) thuộc đường thẳng \(y=\frac{1}{2}x\)=> m=1

Khi m=-3 suy ra phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là y=-2-11

=> m=-3 không thỏa mãn

Vậy m=1 thỏa mãn điều kiện đề bài

5 tháng 5 2016

Ta xét 3 trường hợp :

* Nếu \(x>4\) thì \(x-3>1\Rightarrow\left(x-3\right)^{2010}>1\Rightarrow\left(x-3\right)^{2010}+\left(x+4\right)^{2012}>1\) mâu thuẫn.

* Nếu \(x< 3\) thì \(x-4< -1\Rightarrow\left(x-4\right)^{2010}>1\Rightarrow\left(x-3\right)^{2010}+\left(x+4\right)^{2012}>1\) mâu thuẫn.

* Nếu \(3< x< 4\) thì \(x-3>1\Rightarrow\left|x-3\right|,\left|x-4\right|\le1\Rightarrow\left(x-3\right)^{2010}< \left(x-3\right),\left(x-4\right)^{2012}\le\left(4-x\right)\) 

Do đó \(\left(x-3\right)^{2010}+\left(x-4\right)^{2012}< \left(x-3\right)+\left(4-x\right)=1\) cũng mâu thuẫn

Mặt khác, với \(x=3;x=4\) thì đẳng thức đúng. Vậy ta có điều phải chứng minh

 

1 Trong không gian, cho tam giác ABC vuông tại A , AC=3a và BC=5a. Khi quay quanh tam giác ABC quanh cạnh góc vuông AB thì đường gấp khúc ACB tạo thành một hình nón. Diện tích xung quanh hình nón đó là 2 cho \(\int_1^3f\left(x\right)dx=4\) . Tính I=\(\int_1^9\frac{f\left(\sqrt{x}\right)}{\sqrt{x}}\) dx là A.4 B.8 C.2 D.6 3 cho hàm số f(x)= \(\frac{x^2+m^2x-10}{x-1}\) (m là tham số thực) . Tinh tổng các giá...
Đọc tiếp

1 Trong không gian, cho tam giác ABC vuông tại A , AC=3a và BC=5a. Khi quay quanh tam giác ABC quanh cạnh góc vuông AB thì đường gấp khúc ACB tạo thành một hình nón. Diện tích xung quanh hình nón đó là

2 cho \(\int_1^3f\left(x\right)dx=4\) . Tính I=\(\int_1^9\frac{f\left(\sqrt{x}\right)}{\sqrt{x}}\) dx là

A.4 B.8 C.2 D.6

3 cho hàm số f(x)= \(\frac{x^2+m^2x-10}{x-1}\) (m là tham số thực) . Tinh tổng các giá trị nguyên của m để hàm số đã cho đồng biến trên khoảng xác định

A .7 B.0 C.6 D.3

4 Cho cấp số nhân (\(u_n\) ) với \(u_2\) =8 và công bội q=3. Số hạng đầu tiên \(u_1\) của cấp số nhân đã cho bằng

5 tìm nghiệm pt \(log_2\left(x-5\right)=3\)

6 Thể tích khối lập phương \(ABCD.A^,B^,C^,D^,\) có AC= \(a\sqrt{6}\)

7 đạo hàm của hàm số y=\(e^{2x}\)

8 tính \(\int\) \(3^x\)dx, kết quả là

9 khối chóp S.ABC có thể tích V=\(\frac{2\sqrt{2}}{3}\) và diện tích đáy = \(\sqrt{3}\) . Chiều cao của khối chóp S.ABC bằng

10 Bán kính r của khối cầu có thể tích V= \(36\pi\left(cm^3\right)\)

A r=3(cm) B r= \(\sqrt{27}\)(cm) C r=\(\sqrt[3]{48}\left(cm\right)\) D. r=\(\sqrt[3]{9}\left(cm\right)\)

3
NV
9 tháng 6 2020

8.

\(\int3^xdx=\frac{3^x}{ln3}+C\)

9.

\(V=\frac{1}{3}S.h\Rightarrow h=\frac{3V}{S}=\frac{2\sqrt{6}}{3}\)

10.

\(V=\frac{4}{3}\pi R^3\Rightarrow R=\sqrt[3]{\frac{3V}{4\pi}}=\sqrt[3]{\frac{3.36\pi}{4\pi}}=\sqrt[3]{27}=3\)

NV
9 tháng 6 2020

4.

\(u_2=u_1q\Rightarrow u_1=\frac{u_2}{q}=\frac{8}{3}\)

5.

\(log_2\left(x-5\right)=3\Rightarrow x-5=8\Rightarrow x=13\)

6.

\(AC=a\sqrt{6}\Rightarrow AB=\frac{AC}{\sqrt{2}}=a\sqrt{3}\)

\(\Rightarrow V=AB^3=9\sqrt{3}.a^3\)

7.

\(y'=e^{2x}.\left(2x\right)'=2.e^{2x}\)

7 tháng 4 2016

A E M B C H N S

Xét tam giác ABC có : \(BC=AB.\tan60^0=2a\sqrt{3}\Rightarrow S_{\Delta ABC}=2a^2\sqrt{3}\)

\(V_{S.ABCD}=\frac{1}{3}SA.S_{\Delta ABC}=\frac{1}{3}a\sqrt{3}.2a^2\sqrt{3}=2a^3\)

- Gọi N là trung điểm cạnh SA. Do SB//(CMN) nên d(SB. CM)=d(SB,(CMN))

                                                                                                 =d(B,(CMN))

                                                                                                 =d(A,(CMN))

- Kẻ \(AE\perp MC,E\in MC\) và kẻ \(AH\perp NE,H\in NE\), ta chứng minh được \(AH\perp\left(CMN\right)\Rightarrow d\left(A,\left(CMN\right)\right)=AH\)

Tính \(AE=\frac{2S_{\Delta AMC}}{MC}\) trong đó :

                              \(S_{\Delta AMC}=\frac{1}{2}AM.AC.\sin\widehat{CAM}=\frac{1}{2}a.4a\frac{\sqrt{3}}{2}=a^2\sqrt{3};MC=a\sqrt{13}\)

                             \(\Rightarrow AE=\frac{2a\sqrt{3}}{\sqrt{13}}\)

Tính được \(AH=\frac{2a\sqrt{3}}{\sqrt{29}}\Rightarrow d\left(A,\left(CMN\right)\right)=\frac{2a\sqrt{3}}{\sqrt{29}}\Rightarrow d\left(SB,CM\right)=\frac{2a\sqrt{3}}{\sqrt{29}}\)

14 tháng 12 2016

mình không hiểu rằng bạn muốn tìm thể tích hình lăng trụ nào?có phải là thể tích hình hộp ko?

15 tháng 12 2016

đầu bài nó chỉ cho như thế thôi, bạn thử tính xem là đáp án nào