Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/
\(\Leftrightarrow tan\left(60^0-x\right)=-\frac{1}{\sqrt{3}}\)
\(\Rightarrow60^0-x=-30^0+k180^0\)
\(\Rightarrow x=90^0+k180^0\)
d/
\(\Leftrightarrow tan\left(3x+\frac{2\pi}{5}\right)=-tan\left(\frac{\pi}{5}\right)\)
\(\Leftrightarrow tan\left(3x+\frac{2\pi}{5}\right)=tan\left(-\frac{\pi}{5}\right)\)
\(\Rightarrow3x+\frac{2\pi}{5}=-\frac{\pi}{5}+k\pi\)
\(\Rightarrow x=-\frac{\pi}{5}+\frac{k\pi}{3}\)
a/
\(\Leftrightarrow tan2x=-tan40^0\)
\(\Leftrightarrow tan2x=tan\left(-40^0\right)\)
\(\Rightarrow2x=-40^0+k180^0\)
\(\Rightarrow x=-20^0+k90^0\)
b/
\(\Leftrightarrow tan\left(2x-15^0\right)=1\)
\(\Rightarrow2x-15^0=45^0+k180^0\)
\(\Rightarrow x=30^0+k90^0\)
c/ ĐKXĐ: \(cosx\ne0\)
\(\Leftrightarrow tan^3x+1+tan^2x+4\sqrt{3}\left(1+tanx\right)=8+7tanx\)
\(\Leftrightarrow tan^2x\left(1+tanx\right)+\left(4\sqrt{3}-7\right)\left(1+tanx\right)=0\)
\(\Leftrightarrow\left(tan^2x-7+4\sqrt{3}\right)\left(1+tanx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tan^2x=7-4\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=2-\sqrt{3}\\tanx=-2+\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tanx=tan\left(-\frac{\pi}{4}\right)\\tanx=tan\left(\frac{\pi}{12}\right)\\tanx=tan\left(-\frac{\pi}{12}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{12}+k\pi\\x=-\frac{\pi}{12}+k\pi\end{matrix}\right.\)
Bạn tự tìm x thuộc khoảng đã cho
b/
ĐKXĐ: \(cos2x\ne0\)
\(\Leftrightarrow tan^22x+1+tan^22x=7\)
\(\Leftrightarrow tan^22x=3\)
\(\Rightarrow\left[{}\begin{matrix}tan2x=\sqrt{3}\\tan2x=-\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tan2x=tan60^0\\tan2x=tan\left(-60^0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=60^0+k180^0\\2x=-60^0+k180^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=30^0+k180^0\\x=-30^0+k180^0\end{matrix}\right.\)
Bạn tự tìm nghiệm thuộc khoảng đã cho nhé
c.
ĐKXĐ: ...
\(\Leftrightarrow cot\left(2x-\frac{3\pi}{4}\right)=cot\left(\frac{2\pi}{3}-x\right)\)
\(\Leftrightarrow2x-\frac{3\pi}{4}=\frac{2\pi}{3}-x+k\pi\)
\(\Leftrightarrow x=\frac{17\pi}{36}+\frac{k\pi}{3}\)
d.
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=cos\left(\frac{3\pi}{4}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=\frac{3\pi}{4}-x+k2\pi\\2x+\frac{\pi}{3}=x-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{13\pi}{12}+k2\pi\end{matrix}\right.\)
a.
ĐKXĐ: ...
\(\Leftrightarrow tan\left(3x-\frac{\pi}{3}\right)=tan\left(-x\right)\)
\(\Leftrightarrow3x-\frac{\pi}{3}=-x+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)
b.
ĐKXĐ: ...
\(\Leftrightarrow cot\left(x-\frac{\pi}{4}\right)=cot\left(-x\right)\)
\(\Leftrightarrow x-\frac{\pi}{4}=-x+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}\)
c/
ĐKXĐ: ...
\(\Leftrightarrow tan2x-2=3\left(2tan2x+1\right)\)
\(\Leftrightarrow5tan2x=-5\)
\(\Rightarrow tan2x=-1\)
\(\Rightarrow2x=-\frac{\pi}{4}+k\pi\)
\(\Rightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)
d/
ĐKXĐ: ...
\(\Leftrightarrow sinx+\sqrt{3}cosx=3sinx-\sqrt{3}cosx\)
\(\Leftrightarrow2sinx=2\sqrt{3}cosx\)
\(\Rightarrow tanx=\sqrt{3}\Rightarrow x=\frac{\pi}{3}+k\pi\)
a/
\(\Leftrightarrow tanx=-tan\left(\frac{2\pi}{3}-3x\right)\)
\(\Leftrightarrow tanx=tan\left(3x-\frac{2\pi}{3}\right)\)
\(\Rightarrow x=3x-\frac{2\pi}{3}+k\pi\)
\(\Rightarrow x=\frac{\pi}{3}+\frac{k\pi}{2}\)
b/
\(tan\left(2x-15^0\right)=tanx\)
\(\Rightarrow2x-15^0=x+k180^0\)
\(\Rightarrow x=15^0+k180^0\)
b)đề là \(tan\left(x-15^0\right)=\frac{\sqrt{3}}{3}\)
Vì \(\frac{\sqrt{3}}{3}=tan30^0\) nên
\(\Leftrightarrow tan\left(x-15^0\right)=tan30^0\)
\(\Leftrightarrow x-15^0=30^0+k180^0\)
\(\Leftrightarrow x=45^0+k180^0\left(k\in Z\right)\)
Đk:\(sin3x\ne0\) và \(cos\frac{2\pi}{5}\ne0\)
\(\Leftrightarrow\frac{cos3x}{sin3x}-\frac{sin\frac{2\pi}{5}}{cos\frac{2\pi}{5}}=0\)
\(\Leftrightarrow cos3x\cdot cos\frac{2\pi}{5}-sin\frac{2\pi}{5}\cdot sin3x=0\)
\(\Leftrightarrow cos\left(3x+\frac{2\pi}{5}\right)=0\)
\(\Leftrightarrow3x+\frac{2\pi}{5}=\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{30}+\frac{k\pi}{3}\)
c/
\(\Leftrightarrow\sqrt{3}tan\left(\frac{\pi}{9}-2x\right)=-3\)
\(\Leftrightarrow tan\left(\frac{\pi}{9}-2x\right)=-\sqrt{3}\)
\(\Rightarrow\frac{\pi}{9}-2x=-\frac{\pi}{3}+k\pi\)
\(\Rightarrow x=\frac{2\pi}{9}+\frac{k\pi}{2}\)
d/
\(\Leftrightarrow\left[{}\begin{matrix}tanx=5\\tan2x=tan4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\2x=4+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\x=2+\frac{k\pi}{2}\end{matrix}\right.\)
a/
ĐKXĐ: ...
\(\Leftrightarrow tanx-8\sqrt{3}=3tanx-6\sqrt{3}\)
\(\Leftrightarrow2tanx=-2\sqrt{3}\)
\(\Rightarrow tanx=-\sqrt{3}\Rightarrow x=-\frac{\pi}{3}+k\pi\)
b/
\(\Leftrightarrow tan2x=-cot\left(\frac{5\pi}{8}\right)\)
\(\Leftrightarrow tan2x=tan\left(\frac{\pi}{2}+\frac{5\pi}{8}\right)\)
\(\Leftrightarrow tan2x=tan\left(\frac{9\pi}{8}\right)\)
\(\Rightarrow2x=\frac{9\pi}{8}+k\pi\Rightarrow x=\frac{9\pi}{16}+\frac{k\pi}{2}\)
Ta có :
\(\begin{array}{l}\tan \left( {a + b} \right) = 3\\ \Rightarrow \frac{{tana + \tan b}}{{1 - \tan a.\tan b}} = 3\\ \Rightarrow tana + \tan b = 3(1 - \tan a.\tan b)\,\,\,\,\,\,(1)\\\tan \left( {a - b} \right) = - 3\\ \Rightarrow \frac{{tana - \tan b}}{{1 + \tan a.\tan b}} = 3\\ \Rightarrow tana - \tan b = 3(1 + \tan a.\tan b)\,\,\,\,\,\,(2)\end{array}\)
Cộng theo vế của (1) và (2) ta có
\(\tan a = 3\)
Ta có
\(\tan 2a = \frac{{2\tan a}}{{1 - {{\tan }^2}a}} = \frac{{2.3}}{{1 - {3^2}}} = \frac{{ - 3}}{4}\)
Chọn D