K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2016

Ta có: l-3x-yl= 10

<=> l-2(-3x-y)l=2 * 10 ( Vì -2 trong dâu trị tuyệt đối nên khi nhân ra sẽ là 2*(hiểu k )*)

<=> l 6x + 2y l =20 

Vậy.......

tớ không học lớp 7 không biết

6 tháng 3 2020

Đặt \(A=6x+10y+z\)\(B=3x-2y+4z\)

Ta có : \(A+5B=\left(6x+10y+z\right)+5\left(3x-2y+4z\right)\)

\(=21x+21z=21\left(x+z\right)⋮21\forall x,z\inℤ\)

\(\Rightarrow A+5B⋮21\)(1)

+) Nếu \(A⋮21\) thì từ (1) \(\Rightarrow5B⋮21\Rightarrow B⋮21\) ( Do \(5⋮̸21\) )

+) Nếu \(B⋮21\Rightarrow5B⋮21\) thì từ (1) \(\Rightarrow A⋮21\)

Vậy ta có điều phải chứng minh.

6 tháng 3 2020

Vì \(6x+10y+z⋮21\)\(\Leftrightarrow4.\left(6x+10y+z\right)⋮21\)\(\Leftrightarrow24x+40y+4z⋮21\)

Ta có: \(\left(24x+40y+4z\right)-\left(3x-2y+4z\right)\)

      \(=24x+40y+4z-3x+2y-4z\)

      \(=\left(24x-3x\right)+\left(40y+2y\right)+\left(4z-4z\right)\)

      \(=21x+42y=21.\left(x+2y\right)⋮21\)

  mà \(24x+40y+4z⋮21\)\(\Rightarrow3x-2y+4z⋮21\)

Điều ngược lại:

Vì \(3x-2y+4z⋮21\)\(\Leftrightarrow5.\left(3x-2y+4z\right)⋮21\)\(\Leftrightarrow15x-10y+20z⋮21\)

Ta có: \(\left(15x-10y+20z\right)+\left(6x+10y+z\right)\)

      \(=15x-10y+20z+6x+10y+z\)

      \(=\left(15x+6x\right)-\left(10y-10y\right)+\left(20z+z\right)\)

      \(=21x+21z=21.\left(x+z\right)⋮21\)

  mà \(15x-10y+20z⋮21\)\(\Rightarrow6x+10y+z⋮21\)

Vậy \(6x+10y+z⋮21\Leftrightarrow3x-2y+4z⋮21\)

1 tháng 3 2017

1 ) \(\frac{9x+9y}{10a-10b}=\frac{9\left(x+y\right)}{10\left(a-b\right)}=\frac{9}{10}.\frac{x+y}{a-b}=\frac{9}{10}.\frac{2}{3}=\frac{3}{5}\)

2 ) \(\left(-3x-y\right)=10\Rightarrow3x+y=-10\)

\(\Rightarrow2\left(3x+y\right)=2.\left(-10\right)\)

\(\Rightarrow6x+2y=-20\)

2 tháng 3 2017

6x + 2y = -(6x - 2y)

= -2.(3x - 2y)

= 2 . 10

= 20

28 tháng 8 2019

Ta có: 6x - 2y = 7y - 3x

=> 6x + 3x = 7y + 2y

=> 9x = 9y => x = y

=> x - y = 0

mà x - y = 10 (đb)

=> ko có x; t tm

7x - 2y = 5x - 3y

=> 7x - 5x = -3y + 2y

=> 2x = -y

=> \(\frac{x}{-1}=\frac{y}{2}\) => \(\frac{2x}{-2}=\frac{3y}{6}\)

áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{2x}{-2}=\frac{3y}{6}=\frac{2x+3y}{-2+6}=\frac{20}{4}=5\)

=> \(\hept{\begin{cases}\frac{x}{-1}=5\\\frac{y}{2}=5\end{cases}}\) => \(\hept{\begin{cases}x=5.\left(-1\right)=-5\\y=5.2=10\end{cases}}\)

28 tháng 8 2019

ta có 6x-2y=7y-3x chuyển vế sang

=>9x=9y

do x-y=10 nên x=10+y

=>9(10+y)=9y

=>90+9y=9y 

=>90=0y

=>y=0=>x=10