Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu cả khối thêm một người vào thì xếp hàng 2, hàng 3, hàng 4, hàng 5, vừa đủ nhưng xếp hàng 7 thì dư 1 người
Ta có tổng số học sinh cả khối khi thêm 1 người là: 2 . 3 . 4 . 5 = 120(học sinh)
Tổng số học sinh cả khối là: 120 - 1 =119(học sinh)
ĐS: 119 học sinh
Giải
Gọi m (m ∈ N* và m < 300 ) là số học sinh của một khối.
Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 đều thiếu 1 người nên:
(m + 1) ⋮ 2; (m + 1) ⋮ 3; (m + 1) ⋮ 4; (m + 1) ⋮ 5; (m + 1) ⋮ 6
Suy ra (m +1) ∈ BC(2; 3; 4; 5; 6) và m + 1 < 301
Ta có: 2 = 2
3 = 3
4=224=22
5 = 5
6 = 2.3
BCNN(2; 3; 4; 5; 6) = 22.3.5=6022.3.5=60
BC(2; 3; 4; 5; 6) = {0;60;120;180;240;300;360;...}{0;60;120;180;240;300;360;...}
Vì m + 1 < 301 nên m + 1 ∈ {60;120;180;240;300}{60;120;180;240;300}
Suy ra: m ∈ {59;119;179;239;299}{59;119;179;239;299}
Ta có: 59 ⋮̸⋮̸ 7; 119 ⋮ 7; 179 ⋮̸⋮̸ 7; 239 ⋮̸⋮̸ 7; 299 ⋮̸⋮̸ 7
Vậy khối có 119 học sinh.
~ Chúc bạn học tốt tk mk nha ~
Giải:
Gọi số học sinh của khối cần tìm là a
Theo đề ra, ta có:
0<a<4000<a<400
a+1∈BC{2;3;4;5;6}a+1∈BC{2;3;4;5;6}
a⋮7a⋮7
Mà BCNN{2;3;4;5;6}=60BCNN{2;3;4;5;6}=60
⇔a+1∈{60;120;180;240;300;360;420;...}⇔a+1∈{60;120;180;240;300;360;420;...}
Vì 0<a<4000<a<400 và a⋮7a⋮7
⇔a+1=120⇔a+1=120
⇔a=119⇔a=119
Vậy số học sinh của khối cần tìm là 119 em
Gọi số hs của trường đó là a ( a\(\in\)N*, a<300 và a\(⋮\)7)
Do a : 2,3,4,5,6 dư 1\(\Rightarrow\)a+1 \(\in\)BC(2,3,4,5,6)
\(\Rightarrow\)a+1 \(⋮\)BCNN(2,3,4,5,6,)
Ta có: 2 = 2.1
3 = 3 .1
4 = 22
5 = 5.1
6 = 3 .2
\(\Rightarrow\)BCNN(2,3,4,5,6)=22.3.5=60
\(\Rightarrow\)BC(2,3,4,5,6)=B(60)={0;60;120;180;...}
Vì a\(\le\)300 và a + 1\(⋮\)7
\(\Rightarrow\)a + 1 \(=\)120
\(\Rightarrow\)a =120 - 1
\(\Rightarrow\)a = 119
Vậy a = 119
Gọi m (m ∈ N* và m < 300 ) là số học sinh của một khối.
Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 đều thiếu 1 người nên:
(m + 1) ⋮ 2; (m + 1) ⋮ 3; (m + 1) ⋮ 4; (m + 1) ⋮ 5; (m + 1) ⋮ 6
Suy ra (m +1) ∈ BC(2; 3; 4; 5; 6) và m + 1 < 301
Ta có: 2 = 2
3 = 3
4 = 22
5 = 5
6 = 2.3
BCNN(2; 3; 4; 5; 6) = 2.2.3.5 = 60
BC(2; 3; 4; 5; 6) = {0;60;120;180;240;300;360;...}
Vì m + 1 < 301 nên m + 1 ∈ {60;120;180;240;300}
Suy ra: m ∈ {59;119;179;239;299}
Ta có: 59 ⋮̸ 7; 119 ⋮ 7; 179 ⋮̸ 7; 239 ⋮̸ 7; 299 ⋮̸ 7
Vậy khối có 119 học sinh.
Gọi số học sinh là a (0<a<300)
Vì a:2,3,4,5,6 đều thiếu 1
nên a+1 chia hết cho 2,3,4,6,5 (1<a+1<301)
vì a chia hết cho 7
nên (a+1):7(dư1)
ta có
2=2
3=3
4=2^2
5=5
6=2x3
Suy ra BCNN(2,3,4,5,6) = 2^2x3x5 = 60
BC(2,3,4,5,6) = B(60) = {0;60;120;180;240;360;...}
Mà 1<a+1<301
Suy ra a+1 = {60;120;180;240}
Ta có
60:7(dư4)
120:7(dư1)
180:7(dư 5)
240:7 (dư2)
Mà a+1:7(dư 1)
Suy ra a+1=120
a =120-1
a =119
Vậy số học sinh là 119
Gọi m là số học sinh cần tìm của khối ( m ∈ N* và m < 300)
Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 thiếu 1 người nên:
(m+1) ⋮2; (m + 1) ⋮3; (m + 1) ⋮ 4; (m+ 1) ⋮5; (m + 1) ⋮6
Suy ra: (m + 1) ∈ BC(2; 3; 4; 5; 6) và m + 1 < 301 (vì m < 3000).
Ta có 2 = 2; 3 = 3; 4 = 22; 5 = 5 và 6 = 2.3
BCNN(2; 3; 4; 5; 6) = 22.3.5 = 60
BC(2; 3; 4; 5; 6) = {0; 60; 120; 180; 240; 300; ...}
Vì m + 1 < 301 nên m + 1 ∈ {60; 120; 180; 240; 300}
Suy ra m ∈ {59; 119; 179; 239; 299} (1)
* Do khi xếp hàng 7 thì vừa đủ nên m ⋮ 7 (2)
Từ (1) và (2) suy ra: m = 119
Vậy khối có 119 học sinh
Tính ước chung lớn nhất của 2 ; 3 ; 4 ; 5 ; 6 : \(ƯC\left(2;3;4;5;6\right)=\left\{60;120;180;240;...\right\}\)
Vì khi xếp hàng 2 ; 3 ; 4 ; 5 ; 6 đều thiếu một người tức là khi chia cho các số đó thì thiếu 1 để có phép chia hết
Mà số hs chưa đến 300 nên các số đó là \(\left\{59;119;179;239;299\right\}\)
Mà xếp hàng 7 thì vừa nên số hs chia hết cho 7. Ở đây có mỗi 119 chia hết cho 7
=> Vậy số học sinh là 119
Gọi số học sinh phải tìm là a ( 0<a<300 ) và a chia hết cho 7.
Khi xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 đều thiếu 1 người nên a+1 chia hết cho cả 2,3,4,5,6.
a+1 ∈ BC (2,3,4,5,6)
BCNN(2,3,4,5,6) = 60
BC(2,3,4,5,6) = {0;60;120;180;240;300;360;...}
a+1 ∈ {0;60;120;180;240;300;360;...}
Vì 0<a<300 1<a+1<301 và a chia hết 7.
nên a+1 = 120 a = 119
Vậy số học sinh là 119 h/s
tick ủng hộ cái nha
Gọi số học sinh là a , ta có:
a chia 2;3;4;5 dư 1;2;3;4 ( thiếu 1)
Nên a + 1 chia hết cho 2;3;4;5
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5
=> BCNN(2,3,4,5) = 22.3.5 = 60
Vậy a thuộc {59 ; 119 ; 179 ; 239 ; 299 ; 359 ; ....}
MÀ a chia hết cho 7 ; trong số các số trên a nhỏ nhất chia hết cho 7 là 119
Vậy a = 119