K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Ta có:

\(\begin{array}{l}{u_1} = 14 = 13 + 1\\{u_2} = 15 = 13 + 2\\{u_3} = 16 = 13 + 3\\ \vdots \end{array}\)

Vậy công thức số hạng tổng quát: \({u_n} = 13 + n\).

b) Ta có:

\(\begin{array}{l}{u_1} = 14\\{u_2} = 15 = {u_1} + 1\\{u_3} = 16 = {u_2} + 1\\ \vdots \end{array}\)

Vậy công thức truy hồi: \({u_n} = {u_{n - 1}} + 1\left( {n \ge 2} \right)\).

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Ta có:

\(\begin{array}{l}{u_1} = 25\\{u_2} = 24 = {u_1} - 1\\{u_3} = 23 = {u_2} - 1\\ \vdots \end{array}\)

Vậy công thức truy hồi: \({u_n} = {u_{n - 1}} - 1\left( {n \ge 2} \right) \Leftrightarrow {u_n} - {u_{n - 1}} =  - 1 < 0\).

Vậy \(\left( {{u_n}} \right)\) là dãy số giảm.

b) Ta có:

\(\begin{array}{l}{v_1} = 14\\{v_2} = 15 = {v_1} + 1\\{v_3} = 16 = {v_2} + 1\\ \vdots \end{array}\)

Vậy công thức truy hồi: \({v_n} = {v_{n - 1}} + 1\left( {n \ge 2} \right) \Leftrightarrow {v_n} - {v_{n - 1}} = 1 > 0\).

Vậy \(\left( {{v_n}} \right)\) là dãy số tăng.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_1} = 1\)

\( \Rightarrow {u_2} = 2.1 = 2\)

\( \Rightarrow {u_3} = 3.2 = 6\)

\( \Rightarrow {u_4} = 4.6 = 24\)

\( \Rightarrow {u_5} = 5.24 = 120\)

b)

Ta có:

\({u_2} = 2 = 2.1 \)

\({u_3} = 6= 1.2.3 \)

\({u_4} = 24 = 1.2.3.4\)

\({u_5} = 120 = 1.2.3.4.5\)

\( \Rightarrow {u_n} = 1.2.3....n = n!\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) 5 số hạng đầu của dãy số là: 1; 2; 6; 24; 120.

b) \({F_1} = 1,\;{F_2} = 1,\;{F_3} = 2,\;{F_4} = 3,\;{F_5} = 5\;\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Ta có: \({u_1} = 6,\;\;\;\;{u_2} = 12,\;\;\;\;\;{u_3} = 24,\;\;\;\;\;{u_4} = 48,\;\;\;\;\;{u_5} = 96\).

b) Hệ thức truy hồi liên hệ giữa \({u_n}\) và \({u_{n - 1}}\) là: \({u_n} = 2{u_{n - 1}}\).

Đặt \(\dfrac{u_n}{n+1}=v_n\)

\(GT\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{u_1}{1+1}=1\\v_{n+1}=\dfrac{1}{4}v_n,\forall n\in N\text{*}\end{matrix}\right.\)

\(\Rightarrow v_n=\dfrac{1}{4}^{n-1},\forall n\in N\text{*}\)

\(\Rightarrow u_n=\left(n+1\right).\dfrac{1}{4}^{n-1},\forall n\in N\text{*}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({u_n} - {u_{n - 1}} = \left( {4n - 3} \right) - \left[ {4\left( {n - 1} \right) - 3} \right] = 4,\;\forall n \ge 2\).

Vậy \(\left( {{u_n}} \right)\) là một cấp số cộng với số hạng đầu \({u_1} = 1\) và công sai \(d = 4\)

Số hạng tổng quát \({u_n} = 1 + 4\left( {n - 1} \right)\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Ta có: \({u_1} = 1,{u_2} = 2,{u_3} = 3\)

Dự đoán \({u_n} = n\)

b)    Ta có: \(\begin{array}{l}{v_1} = 1\\{v_2} = 8 = {2^3}\\{v_3} = 27 = {3^3}\\{v_4} = 64 = {4^3}\end{array}\)

Dự đoán: \({v_n} = {n^3}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Ta có: \({u_n} =  - 3 + \left( {n - 1} \right).5\)

b)    Ta có:

\(\begin{array}{l}492 =  - 3 + \left( {n - 1} \right).5\\ \Leftrightarrow n - 1 = 99\\ \Leftrightarrow n = 100\end{array}\)

492 là số hạng thứ 100 của cấp số cộng

c)    Ta có: \(300 =  - 3 + \left( {n - 1} \right).5 \Leftrightarrow n - 1 = 60,6\)

300 không là số hạng của cấp số cộng

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Năm số hạng đầu của dãy số là: 3; 9; 19; 33; 51

b)    Năm số hạng đầu của dãy số là: \( - 1;\frac{1}{3}; - \frac{1}{5};\frac{1}{7}; - \frac{1}{9}\)

c)    Năm số hạng đầu của dãy số là: \(2;2;\frac{8}{3};4;\frac{{32}}{5}\)

d)    Năm số hạng đầu của dãy số là: \(2;\frac{9}{4};\frac{{64}}{{27}};\frac{{625}}{{256}};\frac{{7776}}{{3125}}\)