K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2021

Hiểu như này:

\(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{b}{1+b}=3-\left(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+b}\right)\le3-\dfrac{9}{1+a+1+b+1+b}=\dfrac{3\left(a+2b\right)}{3+a+2b}\)

21 tháng 8 2021

ghê quá :<

30 tháng 3 2017

- Các vectơ cùng phương: ; , , ; .

- Các vectơ cùng hướng: ; , ,

- Các vectơ ngược hướng: ; ; ; .

- Các vectơ bằng nhau: = .

15 tháng 4 2017

a) Bảng phân bố tần số (về tuổi thọ bóng đèn điện) có thể viết dưới dạng như sau:

Số trung bình về tuổi thọ của bóng đèn trong bảng phân bố trên là:

.(3x1150 + 6x1160 + 12x1170 + 6x1180 + 3x1190)

= 1170.

b) Số trung bình về chiều dài lá cây dương xỉ trong bài tập 2 trong là:

.(8x15 + 18x25 + 24x35 + 10x45) = 31 (cm).

29 tháng 5 2017

a) Phương sai và độ lệch chuẩn trong bài tập 1. Bảng phân bố tần số viết lại là

Số trung bình: \(\overline{x} = 1170\)

Phương sai: \(S_{x}^{2}=\frac{1}{30}(3x1150^{2}+6x1160^{2}+12x1170^{2}+6x1180^{2}+3x1190^{2})-1170^{2} = 120\)

Độ lệch chuẩn: Sx.= \(\sqrt{S_{x}^{2}}=\sqrt{120} ≈ 10,9545\)

b) Phương sai và độ lệch chuẩn, bảng thống kê trong bài tập 2 \(\S 1.\)

\(S_{x}^{2}=\frac{1}{60}(8x15^{2}+18x25^{2}+24x35^{2}+10x45^{2}) - 312 = 84 \)

Sx ≈ 9,165.

17 tháng 5 2017

a) \(23,3\) phút; \(540^0;27,6^0C\)

b) Khi lấy số trung bình làm đại diện cho các số liệu thống kê về quy mô và độ lớn, có thể xem rằng mỗi ngày bạn A đi từ nhà đến trường đều mất 23,3 phút.

Tương tự, nêu ý nghĩa số trung bình của các số liệu thống kê cho ở bảng 7 và bảng 8.

2 tháng 4 2017

a) Trường hợp thứ nhất, xem trong tóm tắt lí thuyết.

b)

c)

d)


19 tháng 5 2017

Có:
\(DC=AC.tan43^o=\left(AB+BC\right).tan43^o\).
\(DC=BC.tan67^o\).
Vì vây:
\(\left(AB+BC\right).tan43^o=BC.tan67^o\)
\(\Leftrightarrow BC=\dfrac{AB.tan43^o}{tan67^o-tan43^o}=26,55m\).
Suy ra: \(DC=BC.tan67^o=26,55.tan67^o=62,55m\).
Vậy chiều cao DC của chân tháp là 62,55m.

NV
20 tháng 12 2022

5.

Tọa độ dỉnh của (P) là: \(I\left(-\dfrac{b}{2a};\dfrac{-\Delta}{4a}\right)\Rightarrow I\left(1;-4m-2\right)\)

Để I thuộc \(y=3x-1\)

\(\Rightarrow-4m-2=3.1-1\)

\(\Rightarrow m=-1\)

6.a.

Với \(a\ne0\)

 \(\left\{{}\begin{matrix}64a+8b+c=0\\-\dfrac{b}{2a}=5\\\dfrac{4ac-b^2}{4a}=12\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}64a+8b+c=0\\b=-10a\\4ac-b^2=48a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=-64a-8b=-64a-8\left(-10a\right)=16a\\b=-10a\\4ac-b^2=48a\end{matrix}\right.\)

\(\Rightarrow4a.16a-\left(-10a\right)^2=48a\)

\(\Rightarrow a=-\dfrac{4}{3}\Rightarrow b=\dfrac{40}{3}\Rightarrow c=-\dfrac{64}{3}\)

Hay pt (P): \(y=-\dfrac{4}{3}x^2+\dfrac{40}{3}x-\dfrac{64}{3}\)

NV
20 tháng 12 2022

b.

Thay tọa độ 3 điểm vào pt (P) ta được:

\(\left\{{}\begin{matrix}c=-1\\a+b+c=-1\\a-b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=-1\end{matrix}\right.\)

Pt (P): \(y=x^2-x-1\)

c.

Do (P) đi qua 3 điểm có tọa độ (1;16); (-1;0); (5;0) nên ta có:

\(\left\{{}\begin{matrix}a+b+c=16\\a-b+c=0\\25a+5b+c=0\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=8\\c=10\end{matrix}\right.\)

hay pt (P) có dạng: \(y=-2x^2+8x+10\)

25 tháng 4 2017

Mốt của bảng phân bố tần số đã cho là: 3.