\(\left(2x^2-3x\right)\left(5x^2-2x+1\right)\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

a) \((2x^2−3x)(5x^2−2x+1)\)

\(=2x^2.5x^2−2x^2.2x+2x^2−3x.5x^2+3x.2x−3x\)

\(=10x^4−4x^3+2x^2−15x^3+6x^2−3x\)

\(=10x^4−19x^3+8x^2−3x\)

b) \((x−2y)(3xy+5y^2+x)\)

\(=x.3xy+x.5y^2+x.x−2y.3xy−2y.5y^2−2y.x\)

\(=3x^2y+5xy^2+x^2−6xy^2−10y^3−2xy\)

\(=3x^2y−xy^2−2xy+x^2−10y^3\)

17 tháng 5 2019

A= 3xy-11x2-5y.8xy-5+6

=(3-11-5.8-5+6).(x2.x2.x).(y.y.y)

=-47x5y3

20 tháng 4 2017

Bài giải:

a) (-2x5 + 3x2 – 4x3) : 2x2 = (- 2222)x5 – 2 + 3232x2 – 2 + (-4242)x3 – 2 = - x3 + 3232 – 2x.

b) (x3 – 2x2y + 3xy2) : (- 1212x) = (x3 : -1212x) + (-2x2y : -1212x) + (3xy2 : -1212x)

= -2x2 + 4xy – 6y2

c)(3x2y2 + 6x2y3 – 12xy) : 3xy = (3x2y2 : 3xy) + (6x2y2 : 3xy) + (-12xy : 3xy)

= xy + 2xy2 – 4.

20 tháng 4 2017

a) (-2x5+3x2-4x3) : 2x2

= (-2x5:2x2)-(4x3:2x2)+(3x2:2x2)

= -x3-2x+\(\dfrac{3}{2}\)

b) \(\left(x^3-2x^2y+3xy^2\right):\left(-\dfrac{1}{2}x\right)\)

= \(\left(x^3:\dfrac{-1}{2}x\right)+\left(-2x^2y:\dfrac{-1}{2}x\right)+\left(3xy^2:\dfrac{-1}{2}x\right)\)

= \(-2x^2+4xy-6y^2\)

c) \(\left(3x^2y^2+6x^2y^3-12xy\right):3xy\)

= \(\left(6x^2y^3:3xy\right)+\left(3x^2y^2:3xy\right)+\left(-12xy:3xy\right)\)

= \(xy^2+xy-4\)

21 tháng 10 2020

cau a : (3x^2y-6xy+9x)(-4/3xy)

           =-4/3xy.3x^2y+4/3xy.6xy-4/3xy.9x

           =-4x+8-8y

cau b : (1/3x+2y)(1/9x^2-2/3xy+4y^2)

            =(1/3)^3-2/9x^2y+8y^3+4/3xy^2+2/9x^2y-4/3xy^2+8y^3

             =(1/3)^3 + (2y)^3x-2

cau c :  (x-2)(x^2-5x+1)+x(x^2+11)

            =x^3-5x^2+x-2x^2+10x-2+x^3+11x

            =2x^3-7x^2+22x-2

cau d := x^3 + 6xy^2 -27y^3

cau e := x^3 + 3x^2 -5x - 3x^2y - 9xy = 15y

cau f := x^2-2x+2x -4-2x-1

          = x(x-2)-5

21 tháng 10 2020

cau e la + 15y ko phai =15y

a: \(=2x^2-x+5\)

b: \(=-\dfrac{3}{2}x^3+x^2-\dfrac{1}{2}x\)

c: \(=-x^3+\dfrac{3}{2}-2x\)

d: \(=-2x^2+4xy-6y^2\)

e: \(=\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\)

27 tháng 4 2017

a,3x(5x^2-2x-1)

=15x^3-6x^2-3x

27 tháng 4 2017

a) \(3x\left(5x^2-2x-1\right)\)

\(=15x^3-6x^2-3x\)

b) \(\left(x^2+2xy-3\right)\left(-xy\right)\)

\(=-x^3y-2x^2y^2+3xy\)

c) \(\dfrac{1}{2}x^2y\left(2x^3-\dfrac{2}{5}xy^2-1\right)\)

\(=x^5y-\dfrac{1}{5}x^3y^3-\dfrac{1}{2}x^2y\)

19 tháng 4 2017

a) x2(5x3 – x - \(\dfrac{1}{2}\) )= x2. 5x3 + x2 . (-x) + x2 . (-\(\dfrac{1}{2}\))

= 5x5 – x3\(\dfrac{1}{2}\)x2

b) (3xy – x2 + y)\(\dfrac{2}{3}\)x2y = \(\dfrac{2}{3}\)x2y . 3xy + \(\dfrac{2}{3}\)x2y . (- x2) + \(\dfrac{2}{3}\)x2y . y

= 2x3y2\(\dfrac{2}{3}\)x4y + \(\dfrac{2}{3}\)x2y2

c) (4x3– 5xy + 2x)(- \(\dfrac{1}{2}\)xy) = - \(\dfrac{1}{2}\)xy . 4x3 + (- \(\dfrac{1}{2}\)xy) . (-5xy) + (- \(\dfrac{1}{2}\)xy) . 2x

= -2x4y + \(\dfrac{5}{2}\)x2y2 - x2y.




14 tháng 8 2017

a) x2 (5x3 - x - \(\dfrac{1}{2}\))

= 5x5 - x3 - \(\dfrac{1}{2}\)x2

b) (3xy - x2 + y) \(\dfrac{2}{3}\)x2y

= 2x3y2 - \(\dfrac{2}{3}\)x4y + \(\dfrac{2}{3}\)x2y2

c) (4x3 - 5xy +2x) (-\(\dfrac{1}{2}\)xy)

= -2x4y + \(\dfrac{5}{2}\)x2y2 - x2y

1a) (x - 2y) (x2 - 2xy + y2)

= (x - 2y) (x - y)2

= x2 - xy - 2xy + 2y2

= (x2 - xy) - (2xy - 2y2)

= x (x - y) - 2y (x - y)

= (x - y) (x - 2y)

2a) x (x - 3) - y (3 - x)

= x (x - 3) + y (x - 3)

= (x - 3) (x + y)

b) 3x2 - 5x - 3xy + 5y

= (3x2 - 3xy) - (5x - 5y)

= 3x (x - y) - 5 (x - y)

= (x - y) (3x - 5)

3) 12x (3 - 4x) + 7 (4x - 3) = 0

12x (3 - 4x) - 7 (3 - 4x) = 0

(3 - 4x) (12x - 7) = 0

=> 3 - 4x = 0 hoặc 12x - 7 = 0

* 3 - 4x = 0 => x = \(\frac{3}{4}\)

* 12x - 7 = 0 => x = \(\frac{7}{12}\)

Vậy x =\(\frac{3}{4}\)hoặc x =\(\frac{7}{12}\)

27 tháng 7 2018

\(B=x^2-6x+y^2-2y+12=\left(x^2-6x+9\right)\left(y^2-2y+1\right)+2\)
\(B=\left(x-3\right)^2+\left(y-1\right)^2+2\text{ }\)
Ta thấy B lớn hơn hoặc bằng 2 suy ra GTNN của B là 2 
Dấu = xảy ra khi x=3; y=1
\(C=2x^2-6x=\left(2x^2-6x+4,5\right)-4,5=2\left(x^2-3x+2,25\right)-4,5\)
\(C=2\left(x-1,5\right)^2-4,5\)
Ta thấy C luôn luôn lớn hơn hoặc bằng -4,5 nên GTNN của C là -4,5 
Dấu = xảy ra khi x=1,5
Tối mình full cho còn giờ mình đi đá bóng đây

27 tháng 7 2018

1) \(D=\frac{2016}{-4x^2+4x-5}\). Để D đạt giá trị nhỏ nhất suy ra \(-4x^2+4x-5\)đạt giá trị lớn nhất. 
Ta có \(-4x^2+4x-5=-4x^2+4x-1-4=\left(-4x^2+4x-1\right)-4\)
\(-4\left(x^2-x+\frac{1}{4}\right)-4=-4\left(x-\frac{1}{2}\right)^2-4\).
Ta Thấy:\(-4\left(x-\frac{1}{2}\right)^2\) bé hơn hoặc bằng 0 nên \(-4\left(x-\frac{1}{2}\right)^2-4\)bé hơn hoặc bằng -4
nên ..... bạn tự kết luận

a: \(=-3x^3y^3-3x^2y^2+2x^2y\)

b: \(=6x^2+12x-2x-4\)

\(=6x^2+10x-4\)

c: \(=6x^3y^3+10x^2y^2-2x^2y\)

d: \(=2x^2-3x-2x+3\)

\(=2x^2-5x+3\)