Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-1/20 - 1/30 - 1/42 - 1/56 - 1/72 - 1/90
= -1/20( 1 + 2/3 + 10/21 + 5/14 + 5/18 + 2/9 )
= -1/20. [ (1 + 2/3) + (10/21 + 5/14) + (5/18 + 2/9)
= -1/20.( 5/3 + 5/6 + 1/2 )
= -1/20.( 5/2 + 1/2 )
= -1/20.3
= -3/20
\(A=-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}-\frac{1}{90}\)
\(=-\left(\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+\frac{1}{8\times9}+\frac{1}{9\times10}\right)\)
\(=-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(=-\frac{1}{4}+\frac{1}{10}\)
\(=-\frac{3}{20}\)
\(A=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
\(A=-\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(A=-\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(A=-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=-\left(\frac{1}{4}-\frac{1}{10}\right)\)
\(A=-\left(\frac{5}{20}-\frac{2}{20}\right)\)
\(A=-\frac{3}{20}\)
Sửa đề: A=-1/20+(-1/30)+(-1/42)+(-1/56)+(-1/72)+(-1/90)
=-(1/20+1/30+...+1/90)
=-(1/4-1/5+1/5-1/6+...+1/9-1/10)
=-1/4+1/10
=-5/20+2/20=-3/20
`Answer:`
\(A=-\frac{1}{20}+-\frac{1}{30}+-\frac{1}{42}+-\frac{1}{56}+-\frac{1}{72}+-\frac{1}{90}\)
\(=-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}-\frac{1}{90}\)
\(=-\frac{1}{20}-\left(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(=-\frac{1}{20}-\left(\frac{1}{5}-\frac{1}{10}\right)\)
\(=-\frac{1}{20}-\frac{1}{10}\)
\(=-\frac{3}{20}\)
A=\(\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)
A=\(-\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)\)
A=\(-\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
A=\(-\left(\dfrac{1}{4}-\dfrac{1}{10}\right)\)
A=\(-\dfrac{3}{20}\)
tách đc như bước 3 là nhờ công thức \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\) hoặc \(\dfrac{k}{n\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\) nhé