Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)1/7\(\sqrt{51}\)=\(\sqrt{\frac{51}{49}}\);1/9\(\sqrt{150}=\sqrt{\frac{150}{81}}=\sqrt{\frac{50}{27}}\)
\(\frac{51}{49}=1+\frac{1}{49}+\frac{1}{49}\);\(\frac{50}{27}=1+\frac{23}{27}>1+\frac{23}{36}>\)\(1+\frac{2}{36}=1+\frac{1}{36}+\frac{1}{36}\)
1/49<1/36 nên 51/49<50/27 =>1/7\(\sqrt{51}\)<1/9\(\sqrt{150}\)
b) \(\sqrt{2017}+\sqrt{2016}>\sqrt{2016}\)+\(\sqrt{2015}\)
=>\(\frac{1}{\sqrt{2017}+\sqrt{2016}}< \)\(\frac{1}{\sqrt{2016}+\sqrt{ }2015}\) <=> \(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}\)-\(\sqrt{2015}\)
a, \(1< 2\Rightarrow\sqrt{1}< \sqrt{2}\Rightarrow1+1< \sqrt{2}+1\Rightarrow2< \sqrt{2}+1\)
c, \(4>3=>\sqrt{4}>\sqrt{3}=>\sqrt{4}-1>\sqrt{3}-1\Rightarrow1>\sqrt{3}-1\)
d, \(16>11=>\sqrt{16}>\sqrt{11}\Rightarrow4>\sqrt{11}=>4.\left(-3\right)< \sqrt{11}.\left(-3\right)\)
\(=>-12< -3.\sqrt{11}\)
Ta có :\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{25}}\left(1\right);\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{25}}\left(2\right);\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{25}}\left(3\right);...;\frac{1}{\sqrt{24}}>\frac{1}{\sqrt{25}}\left(24\right);\frac{1}{\sqrt{25}}=\frac{1}{\sqrt{25}}\left(25\right)\)
Cộng các vế từ (1) -> (25),ta có :\(A>\frac{1}{\sqrt{25}}.25=\frac{25}{5}=5\)
P/S : Theo cách làm trên,ta có công thức tổng quát :\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n-1}}+\frac{1}{\sqrt{n}}>\sqrt{n}\left(n\in N;n>1\right)\)
1) \(A=\left(\sqrt{7-\sqrt{21}+4\sqrt{5}}\right)^2=7-\sqrt{21}+4\sqrt{5}\)
\(B=\left(\sqrt{5}-1\right)^2=6-2\sqrt{5}\)
\(\Rightarrow A-B=1-\sqrt{21}+6\sqrt{5}=\left(1+\sqrt{180}\right)-\sqrt{21}>0\)
\(\Rightarrow A>B\Rightarrow\sqrt{7-\sqrt{21}+4\sqrt{5}}>\sqrt{5}-1\)
2) \(C=\left(\sqrt{5}+\sqrt{10}+1\right)^2=5+10+1+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}\)
\(=26+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}>26+10>35=\left(\sqrt{35}\right)^2\)
Vậy \(\sqrt{5}+\sqrt{10}+1>\sqrt{35}\)
3) \(\left(\frac{15-2\sqrt{10}}{3}\right)^2=\frac{225-60\sqrt{10}+40}{9}=\frac{265-60\sqrt{10}}{9}=\frac{265}{9}-\frac{20\sqrt{10}}{3}< 15\)
Vậy nên \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)
a) \(2\sqrt[3]{3}=\sqrt[3]{2^3}.\sqrt[3]{3}=\sqrt[3]{2^3.3}=\sqrt[3]{24}\)
Ta có : \(24>23\), nên \(\sqrt[3]{24}>\sqrt[3]{23}\)
Vậy \(2\sqrt[3]{3}>\sqrt[3]{23}\)
b) Ta có :
\(11=\sqrt[3]{11^3}=\sqrt[3]{1331}\)
Từ đó suy ra \(33< 3\sqrt[3]{1333}\)
a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)
\(\sqrt{6}< \sqrt{6,25}=2,5\);
\(\sqrt{12}< \sqrt{12,25}=3,5\);
\(\sqrt{20}< \sqrt{20,25}=4,5\)
=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)
Vậy P < 12
Answer:
ý a, tham khảo bài làm của @xyzquynhdi
\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)
\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)