Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai 1
1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0
<=>(2x)^2-5^2=0
<=>(2x+5)*(2x-5)=0
<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự
\(\left(x+2\right)^2=9\left(x^2-4x+4\right)\)
\(\Leftrightarrow\left(x+2\right)^2-9\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+2\right)^2-\left[3\left(x-2\right)\right]^2=0\)
\(\Leftrightarrow\left(x+2+3x-6\right)\left(x+2-3x+6\right)=0\)
\(\Leftrightarrow\left(4x-4\right)\left(-2x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-4=0\\-2x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
Vậy ...
a) \(\left(2x+7\right)^2=9\left(x+2\right)^2\)
\(\Leftrightarrow\left(2x+7\right)^2-9\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(2x+7\right)^2-\left[3\left(x+2\right)\right]^2=0\)
\(\Leftrightarrow\left(2x+7\right)^2-\left(3x+6\right)^2=0\)
\(\Leftrightarrow\left(2x+7-3x-6\right)\left(2x+7+3x+6\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(5x+13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}1-x=0\\5x+13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\5x=-13\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{13}{5}\end{matrix}\right.\)
b)\(\left(x+2\right)^2=9\left(x^2-4x+4\right)\)
\(\Leftrightarrow\left(x+2\right)^2-9\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+2\right)^2-9\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)^2-\left[3\left(x-2\right)\right]^2=0\)
\(\Leftrightarrow\left(x+2\right)^2-\left(3x-6\right)^2=0\)
\(\Leftrightarrow\left(x+2-3x+6\right)\left(x+2+3x-6\right)=0\)
\(\Leftrightarrow\left(8-2x\right)\left(4x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}8-2x=0\\4x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2\left(4-x\right)=0\\4\left(x-1\right)=0\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)
b) ( x2 - 9 ) . ( x - 7 ) = ( x + 3 ) . ( x2 + 6 )
<=> x3 - 7x2 - 9x + 63 = x3 + 6.x+ 3.x2 + 18
<=> x3 -7.x2 - 9.x + 63 - x3 + 6.x -3.x2 -18 =0
<=> -10.x2 - 15.x + 45 = 0
<=> 10.x2 + 15 .x - 45 = 0
<=> 5.( 2.x - 3 ) . ( x + 3 ) =0
<=> \(\orbr{\begin{cases}2.x-3=0\\x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{3}{2}\\x=-3\end{cases}}\)
Vậy x = 3/2 ; -3
c) .....
\(2\left(x+1\right)=5x+7\\ \Leftrightarrow2x+2=5x+7\\\Leftrightarrow 2x-5x=-2+7\\\Leftrightarrow -3x=5\\ \Leftrightarrow x=-\frac{5}{3}\)
Vậy phương trình trên có nghiệm là \(-\frac{5}{3}\)
\(3x-1=x+3\\ \Leftrightarrow3x-x=1+3\\ \Leftrightarrow2x=4\\\Leftrightarrow x=2\)
Vậy phương trình trên có nghiệm là \(2\)
\(15-7x=9-3x\\\Leftrightarrow -7x+3x=-15+9\\\Leftrightarrow -4x=-6\\ \Leftrightarrow x=\frac{3}{2}\)
Vậy phương trình trên có nghiệm là \(\frac{3}{2}\)
\(2x+1=15x-5\\ \Leftrightarrow2x-15x=-1-5\\ \Leftrightarrow-13x=-6\\ \Leftrightarrow x=\frac{6}{13}\)
Vậy phương trình trên có nghiệm là \(\frac{6}{13}\)
\(3x-2=2x+5\\ \Leftrightarrow3x-2x=2+5\\ \Leftrightarrow x=7\)
Vậy phương trình trên có nghiệm là \(7\)
a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)
TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)
TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)
b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)
c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)
\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)
ĐKXD: ∀x
Ta có \(\dfrac{x^{2^{ }}+2x+1}{x^2+2x+2}\) + \(\dfrac{x^2+2x+2}{x^2+2x+3}\) = \(\dfrac{7}{6}\)
Đặt x2 + 2x + 2 là a (a ∈ Q) Ta có phương trình mới ẩn a:
\(\dfrac{a-1}{a}+\dfrac{a}{a+1}\) = \(\dfrac{7}{6}\)
⇔ \(\dfrac{6\left(a-1\right)\left(a+1\right)}{6a\left(a+1\right)}\)+\(\dfrac{6a^2}{6a\left(a+1\right)}\) = \(\dfrac{7}{6}\)
⇔\(\dfrac{6\left(a^2-1\right)+6a^2}{6a\left(a+1\right)}\) = \(\dfrac{7a\left(a+1\right)}{6a\left(a+1\right)}\)
Suy ra: 6a2 - 6 + 6a2 = 7a2 + 7a
⇔ 12a2 - 6 - 7a2 - 7a
⇔ 5a2 - 7a - 6 = 0
⇔5a2 - 10a + 3a - 6 = 0
⇔5a( a - 2 ) + 3( a - 2 ) = 0
⇔ (5a + 3)(a - 2) = 0
⇔\(\left[{}\begin{matrix}a-2=0\\5a+3=0\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}a=2\\a=-0,6\end{matrix}\right.\)
Với a = 2 thì:
x2 + 2x + 2 = 2 ⇔ x2 + 2x = 0
⇔ x(x + 2) = 0 ⇔ \(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Với a = -0,6 thì:
x2 + 2x + 2 = -0,6 ⇔ x2 + 2x + 1 = -1,6
⇔ (x + 1)2 = -1,6 (Vô lí vì (x + 1)2 ≥ 0)
Vậy S ∈ \(\left\{0;-2\right\}\)
\(3x\left(x+5\right)-\left(x+2\right)^2=2x^2+7\)
\(\Leftrightarrow3x^2+15x-x^2-4x-4=2x^2+7\)
\(\Leftrightarrow3x^2-2x^2-x^2+15x-4x=7+4\)
\(\Leftrightarrow11x=11\)
\(\Leftrightarrow x=1\)
https://www.youtube.com/channel/UCT23clmdY5azigRNMRDxGfw
đăng kí hộ
\(\left(2x+7\right)^2=9\left(x+2\right)^2\)
\(\Leftrightarrow\left(2x+7\right)^2-9\left(x+2\right)^2=0\)
\(\Leftrightarrow\left[2x+7+3\left(x+2\right)\right]\left[2x+7-3\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(2x+7+3x+6\right)\left(2x+7-3x-6\right)=0\)
\(\Leftrightarrow\left(5x+13\right)\left(-x+1\right)=0\)
\(\Leftrightarrow5x+13=0\) hay \(-x+1=0\)
\(\Leftrightarrow x=\dfrac{-13}{5}\) hay \(x=1\).
-Vậy \(S=\left\{\dfrac{-13}{5};1\right\}\)
\(\Leftrightarrow4x^2+28x+49=9x^2+36x+36\)
\(\Leftrightarrow5x^2+8x-13=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{13}{5}\end{matrix}\right.\)