Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DỰng thêm đường DG,CH song song vơi AB như hình vẽ
ta có : \(\widehat{HCD}=\widehat{DCA}-\widehat{HCA}=110^0-90^0=30^0\)
mà ta có \(\hept{\begin{cases}\widehat{HCD}=\widehat{CDG}=30^0\\\widehat{GDE}=\widehat{DÈF}=30^0\end{cases}}\Rightarrow\widehat{CDE}=\widehat{CDG}+\widehat{GDE}=30^0+30^0=60^0\)
ta có
\(\hept{\begin{cases}\left|x-1\right|+\left|x-7\right|\ge\left|x-1-x+7\right|=6\\\left|x-3\right|\ge0\end{cases}}\)
Vậy \(A\ge6\) dấu bằng xảy ra khi x=3
A=/x-1/+/x-3/+/x-5/+/x-7/=/x-1/+/3-x/+/x-5/+/7-x/>=/x-1+3-x/+/x-5+7-x/=4
dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1>=0,3-x>=0\\x-5>=0,7-x>=0\end{cases}\Rightarrow\hept{\begin{cases}x>=1,3>=x\\x>=5,7>=x\end{cases}\Rightarrow}\hept{\begin{cases}1< =x< =3\\5< =x< =7\end{cases}}}\)
vậy 1<=x<=3 và 5<=x<=7
Mình hướng dẫn cách làm thôi nhé !
Kéo dài Cy theo đầu C cắt AB tại D. Có góc BCY + góc BCD = 1800 ( kề bù )
Mà góc BCy = 1300 => góc BCD = 1800 - 1300 = 500
Xét tam giác BCD có góc B + góc BCD + góc BDC = 1800 ( tổng 3 góc trong tam giác )
=> góc BDC = 1800 - góc B - góc BCD = 580 ( Bạn tự tính ra nhé )
Từ đó ta thấy góc A = góc BDC = 580. Mà 2 góc này ở vị trí đồng vị nên Ax // Cy ( Do D thuộc Cy )
Trên nửa mặt phẳng bờ AB chứa C, kẻ \(BD//Ax\), Ta có:
\(\widehat{xAB}=\widehat{ABD}=100^o\)(2 góc so le trong)
Do tia \(BC\)nằm giữa 2 tia \(BA\)và \(BD\)
\(\Rightarrow\widehat{ABC}+\widehat{CBD}=\widehat{ABD}\)
Thay số: \(40^o+\widehat{CBD}=100^o\)
\(\Rightarrow\widehat{CBD}=100^o-40^o=60^o\)
+) Do\(\hept{\begin{cases}BD//Ax\\Ax//Cy\left(gt\right)\end{cases}}\)
\(\Rightarrow BD//Cy\)(Tính chất bắc cầu)
\(\Rightarrow\widehat{yCB}+\widehat{CBD}=180^o\)
Thay số: \(\Rightarrow\widehat{yCB}+60^o=180^o\)
\(\Rightarrow\widehat{yCB}=180^o-60^o=120^o\)
Vậy, \(\widehat{BCy}=120^o\)
từ B kẻ Bz // Ax và Cy
ta có xAB tcp ABz => xAB + ABz = 180 => ^ABz = 30
có ABz + zBC = 80 => zBC = 50
có zBC = BCy (so le trong) => BCy = 50