Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm đường tròn \(\Rightarrow\) O là trung điểm BC
\(\stackrel\frown{BE}=\stackrel\frown{ED}=\stackrel\frown{DC}\Rightarrow\widehat{BOE}=\widehat{EOD}=\widehat{DOC}=\dfrac{180^0}{3}=60^0\)
Mà \(OD=OE=R\Rightarrow\Delta ODE\) đều
\(\Rightarrow ED=R\)
\(BN=NM=MC=\dfrac{2R}{3}\Rightarrow\dfrac{NM}{ED}=\dfrac{2}{3}\)
\(\stackrel\frown{BE}=\stackrel\frown{DC}\Rightarrow ED||BC\)
Áp dụng định lý talet:
\(\dfrac{AN}{AE}=\dfrac{MN}{ED}=\dfrac{2}{3}\Rightarrow\dfrac{EN}{AN}=\dfrac{1}{2}\)
\(\dfrac{ON}{BN}=\dfrac{OB-BN}{BN}=\dfrac{R-\dfrac{2R}{3}}{\dfrac{2R}{3}}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{EN}{AN}=\dfrac{ON}{BN}=\dfrac{1}{2}\) và \(\widehat{ENO}=\widehat{ANB}\) (đối đỉnh)
\(\Rightarrow\Delta ENO\sim ANB\left(c.g.c\right)\)
\(\Rightarrow\widehat{NBA}=\widehat{NOE}=60^0\)
Hoàn toàn tương tự, ta có \(\Delta MDO\sim\Delta MAC\Rightarrow\widehat{MCA}=\widehat{MOD}=60^0\)
\(\Rightarrow\Delta ABC\) đều
Trả lời:
a, \(2\sqrt{45}+\sqrt{5}-3\sqrt{80}\)
\(=2\sqrt{3^2.5}+\sqrt{5}-3\sqrt{4^2.5}\)
\(=2.3\sqrt{5}+\sqrt{5}-3.4\sqrt{5}\)
\(=6\sqrt{5}+\sqrt{5}-12\sqrt{5}=-5\sqrt{5}\)
c, \(\left(\frac{3-\sqrt{3}}{\sqrt{3}-1}-\frac{2-\sqrt{2}}{1-\sqrt{2}}\right):\frac{1}{\sqrt{3}+\sqrt{2}}\)
\(=\left[\frac{\left(3-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}-\frac{\left(2-\sqrt{2}\right)\left(1+\sqrt{2}\right)}{1-2}\right].\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\left(\frac{3\sqrt{3}+3-3-\sqrt{3}}{2}-\frac{2+2\sqrt{2}-\sqrt{2}-2}{-1}\right).\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\left(\frac{2\sqrt{3}}{2}+\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\frac{2\sqrt{3}+2\sqrt{2}}{2}.\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\frac{\left(2\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{2}=\frac{6+2\sqrt{6}+2\sqrt{6}+4}{2}=\frac{10+4\sqrt{6}}{2}=5+2\sqrt{6}\)
c)\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
=\(\dfrac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}-\dfrac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)
=\(\dfrac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}-\dfrac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)
=\(\dfrac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|}{\sqrt{2}}\)
=\(\dfrac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)
=\(\dfrac{-2}{\sqrt{2}}\)
=\(-\sqrt{2}\)
a/ Khi \(m=5\Leftrightarrow\left(d\right):y=6x-5\)
Phương trình hoành độ giao điểm của \(\left(d\right);\left(P\right)\) là :
\(x^2=6x-5\)
\(\Leftrightarrow x^2-6x+5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}M\left(5;25\right)\\N\left(1,1\right)\end{matrix}\right.\) là giao điểm của \(\left(P\right)\) và \(\left(d\right)\) khi \(m=5\)
b/ Phương trình hoành độ giao điểm của \(\left(P\right);\left(d\right)\) là :
\(x^2=\left(m+1\right)x-m\)
\(\Leftrightarrow x^2-\left(m+1\right)+m=0\)
\(\Delta=\left(m+1\right)^2-4m=m^2-2m+1=\left(m+1\right)^2\ge0\)
Để pt có 2 nghiệm pb \(\Leftrightarrow m\ne-1\)
Ta có :
\(y_1-y_2=4\)
\(\Leftrightarrow x_1^2-x_2^2=4\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)=4\)
Theo định lí Viet ta có :
\(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1.x_2=m\end{matrix}\right.\)
\(\Leftrightarrow x_1-x_2=\dfrac{4}{m+1}\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=\dfrac{16}{\left(m+1\right)^2}\)
\(\Leftrightarrow x_1^2+x_2^2-2x_1.x_2=\dfrac{16}{\left(m+1\right)^2}\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1.x_2=\dfrac{16}{\left(m+1\right)^2}\)
\(\Leftrightarrow\left(m+1\right)^2-4m=\dfrac{16}{\left(m+1\right)^2}\)
\(\Leftrightarrow\left(m-1\right)^2.\left(m+1\right)^2=16\)
\(\Leftrightarrow\left(m^2-1\right)^2=16\)
\(\Leftrightarrow m^2-1=\pm4\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2=3\\m^2=-3\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow m=\pm\sqrt{3}\)
Vậy..