Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(2x^2-8x+y^2+2y+9=0\)
\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\)
Mà \(2\left(x-2\right)^2\ge0\forall x\); \(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
Vậy x=2;y=-1
f) x2 + 2y2 - 2xy + 2x + 2 - 4y =0
<=>x2 + y2 - 2xy+2x-2y+y2-2y+1+1=0
<=>(x-y)2+2(x-y)+1+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>y=1;x=0
Bạn học thầy Trung phải k nè~~~~
Busted :))))
\(x^2-4xy+5y^2=16\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=16\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=16=4^2+0^2=0^2+4^2\)
\(TH1:\left\{{}\begin{matrix}\left(x-2y\right)^2=4^2\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4;x=-4\\y=0\end{matrix}\right.\)
\(TH2:\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\y^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\left(h\right)\left\{{}\begin{matrix}x=-4\\y=-2\end{matrix}\right.\)
\(xy+3x-y=38\)
\(\Leftrightarrow\left(xy-y\right)+\left(3x-3\right)=35\)
\(\Leftrightarrow y\left(x-1\right)+3\left(x-1\right)=35\)
\(\Leftrightarrow\left(x-1\right)\left(y+3\right)=35\)
Làm nốt
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)
1 ) Thực hiện phép tính :
a ) \(-\frac{1}{3}xz\left(-9xy+15yz\right)+3x^2\left(2yz^2-yz\right)\)
\(=3x^2yz-5xyz^2+6x^2yz^2-3x^2yz\)
\(=-5xyz^2+6x^2yz^2\)
b ) \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)
\(=x^3-5x^2-x-2x^2+10x-2-x^3-11x\)
\(=-7x^2-2x-2-x^3\)
c ) \(\left(x^3+5x^2-2x+1\right)\left(x-7\right)\)
\(=x^4+5x^3-2x^2+x-7x^3-35x^2+14x-7\)
\(=x^4-2x^3-37x^2+15x-7\)
d ) \(\left(2x^2-3xy+y^2\right)\left(x+y\right)\)
\(=2x^3-3x^2y+xy^2+2x^2y-3xy^2+y^3\)
\(=2x^3-x^2y-2xy^2+y^3\)
e ) \(\left[\left(x^2-2xy+2y^2\right)\left(x+2y\right)-\left(x^2-4y^2\right)\left(x-y\right)\right]2xy\)
( để xem lại )
2 Tìm x
a ) \(6x\left(5x+3\right)+3x\left(1-10x\right)=7\)
\(\Leftrightarrow30x^2+18x+3x-30x^2=7\)
\(\Leftrightarrow21x=7\)
\(\Leftrightarrow x=3\)
b ) Sai đề
c ) \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^2\left(x+8\right)=27\)
( Để xem lại )
mình chép đúng theo đề cô cho mà sao lại sai được ,hay cô cho sai đề
ta có : \(pt\Leftrightarrow\left(x-y+3-\sqrt{-y^2+2y+3}\right)\left(x-y+3+\sqrt{-y^2+2y+3}\right)=0\)
\(\Leftrightarrow\) cái đó
@Akai Haruma, @Mysterious Person