\(6 V\), điện dung của...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2016

\(W = \frac{1}{2}CU_0^2 = 1,8.10^{-5}J.\)

22 tháng 9 2017

Hiệu điện thế cực đại giữa hai bản tụ trong khung dao động bằng 6V6V, điện dung của tụ bằng 1μF1μF . Biết dao động điện từ trong khung năng lượng được bảo toàn, năng lượng từ trường cực đại tập trung ở cuộn cảm bằng

A.18.10-6 J.

B.0,9.10-6 J.

C.9.10-6 J.

D.1,8.10-6 J.

30 tháng 1 2016

       \(W= W_{Cmax}=W_C+W_L\)

=> \(W_L = W_{Cmax}-W_C= \frac{1}{2}C.(U_0^2-u^2)= 5.10^{-7}J.\)

30 tháng 1 2016

khó lắm anh ơi em mới học lớp 6 thui.

ok

30 tháng 12 2019

Chọn B

Năng lượng từ trường cực đại tập trung ở cuộn cảm bằng:

lWsQN9AjzEd1.png

20 tháng 7 2016

Ta có: \(W=W_t+W_d\)

\(\Leftrightarrow W_t=W_{dmax}-W_d\)

\(=\frac{1}{2}C.U^2_0-\frac{1}{2}Cu^2\)

\(=5.10^{-5}J\)

30 tháng 1 2016

\(W=W_{Cmax}= W_L+W_C\)

\(=> W_L = W_{Cmax}-W_C= \frac{1}{2}C.(U_0^2-u^2)=3,96.10^{-4}J= 396\mu J.\)

6 tháng 3 2019

14 tháng 1 2016

\(\omega = \frac{1}{\sqrt{LC}}=> C = \frac{1}{\omega^2.L}= 5.10^{-6}F.\)

\(W= \frac{1}{2}CU_0^2=2,5.10^{-4}J. \)

 

12 tháng 1 2016

\(L = \frac{1}{\omega^2 C}=0,625H.\)

\(i = 0,02. \cos8000.\frac{\pi}{48000}= 0,02.\cos\frac{\pi}{6}= 0,02.\frac{\sqrt{3}}{2}\)

\(W_C=\frac{1}{2}L(I_0^2-i^2) = 3,125.10^{-5}J.\)

29 tháng 12 2014

\(W_L+W_C = W_{Cmax}\)

mà \(W_{d} = 2 W_t\) => \(W_{Cmax} = \frac{3}{2}W_C=> \frac{1}{2}CU_0^2 = \frac{3}{2}.\frac{1}{2}Cu^2.\)

=> \(u^2 = \frac{2}{3}U_0^2=> u = \pm \frac{2\sqrt{2}}{\sqrt{3}} \approx \pm 1,63 V.\)

Chọn đáp án \(D.1,63V.\)

29 tháng 12 2014

Bạn có thể áp dụng công thức tổng quát

\(W_C = nW_L => W = (1+\frac{1}{n})W_C\)

=> \(U_0^2 = \frac{n+1}{n}u^2\)

=> \(u = \pm \sqrt{\frac{n}{n+1}}U_0.\)

12 tháng 1 2016

Cứ sau những khoảng thời gian \(\frac{T}{4}\) s thì năng lượng trong tụ điện và trong cuộn cảm lại bằng nhau.

\(=> \frac{T}{4}=1\mu s=> T = 4.10^{-6}s.\)

\(W_{Cmax} = \frac{1}{2}CU_0^2=> C = \frac{2W_{Cmax}}{U_0^2} = 1,25.10^{-7}F.\)

\(T = 2\pi .\sqrt{LC}=> L = \frac{T^2}{4\pi^2C}=\frac{32}{\pi^2}\mu H.\)