Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lambda = v/f = 5cm.\)
\(\triangle \varphi = 0.\)
Số điểm dao động với biên độ cực đại trên đoạn S1S2:
\(-AB < d_2-d_1 < AB \Rightarrow -AB < (k+\frac{\triangle\varphi)}{2 \pi}\lambda < AB \\ \Rightarrow - 25 < k \lambda < 25 \\ \Rightarrow -5 < k < 5 \Rightarrow k = -4,...0,1...4.\)
Có 9 điểm.
Số điểm dao động với biên độ cực tiểu trên đoạn S1S2:
\(-AB < d_2-d_1 < AB \Rightarrow -AB < (2k+1+\frac{\triangle\varphi}{\pi})\frac{\lambda}{2} < AB \\ \Rightarrow -25 < (2k+1)\lambda/2 < 25 \\ \Rightarrow -5,5 < k < 4,5 \Rightarrow k = -5,-4,..0,1,..4.\)
Có 10 điểm.
Bước sóng: \(\lambda=v/f=8cm\)
Số cực tiểu: \(2.[\dfrac{S_1S_2}{\lambda}+0,5]=2.[\dfrac{60}{8}+0,5]=16\)
Vì phép chia ở trên ra giá trị nguyên nên hai ta trừ giá trị 2 đầu mút.
Vậy số cực tiểu là: \( 16-2 =14 \)
\(i = \frac{\lambda D}{a} =\frac{0,5. 1}{0,5}=1mm.\)
Số vân sáng trên trường giao thoa L là
\(N_s = 2.[\frac{L}{2i}]+1= 2.2.6+1 = 13.\)
Số vân tối trên trường giao thoa L là
\(N_t = 2.[\frac{L}{2i}+0,5]= 2.7 = 14.\)
\(\lambda = v/f = 0,04m=4cm.\)
\(\triangle \varphi =0\)
Số điểm dao động cực đại trên đoạn thẳng đường kính 2R là:
\(-2R\leq d_2-d_1\leq 2R \Rightarrow -2R\leq (k+\frac{\triangle\varphi)}{2 \pi}\lambda\leq 2R \Rightarrow -2R \leq k.\lambda \leq 2R \\ \Rightarrow \frac{-2R}{\lambda}\leq k \leq \frac{2R}{\lambda} \Rightarrow -1,5 \leq k \leq 1,5 \Rightarrow k=-1,0,1\)
=> trên đường tròn bán kính R có 6 điểm dao động với biên độ cực đại.