Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(=x-4\sqrt{x}+3\sqrt{x}-12=\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)\)
Bài 1:
a)
\(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\) ĐKXĐ: x >1
\(=\left(\dfrac{2\sqrt{x}.\sqrt{x}}{2.2\sqrt{x}}-\dfrac{2}{2.2\sqrt{x}}\right)\left(\dfrac{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)^2}-\dfrac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{2x-2}{4\sqrt{x}}\right)\left(\dfrac{x\sqrt{x}-x-x+\sqrt{x}-x\sqrt{x}-x-x-\sqrt{x}}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{-4x}{\left(x-1\right)^2}\right)\\ =\dfrac{\left(x-1\right).\left(-4x\right)}{2\sqrt{x}.\left(x-1\right)^2}=\dfrac{-2\sqrt{x}}{x-1}\)
b)
Với x >1, ta có:
A > -6 \(\Leftrightarrow\dfrac{-2\sqrt{x}}{x-1}>-6\Rightarrow-2\sqrt{x}>-6\left(x-1\right)\)
\(\Leftrightarrow-2\sqrt{x}+6x-6>0\\ \Leftrightarrow x-\dfrac{2}{6}\sqrt{x}-1>0\\ \Leftrightarrow x-2.\dfrac{1}{6}\sqrt{x}+\left(\dfrac{1}{6}\right)^2>1+\dfrac{1}{36}\\ \Leftrightarrow\left(\sqrt{x}-\dfrac{1}{6}\right)^2>\dfrac{37}{36}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{6}-\sqrt{x}>\dfrac{\sqrt{37}}{6}\\\sqrt{x}-\dfrac{1}{6}>\dfrac{\sqrt{37}}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-\sqrt{x}>\dfrac{\sqrt{37}-1}{6}\\\sqrt{x}>\dfrac{\sqrt{37}+1}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-x>\dfrac{19-\sqrt{37}}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{\sqrt{37}-19}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\)
Vậy không có x để A >-6
Vì: BC=DC
mà M,N là trung điểm của BC,DC
=> BM=MC=DN=NC=1cm
\(S_{AMN}=S_{ABCD}-S_{ADN}-S_{ABM}-S_{NMC}\)
\(=AB\cdot AB-\frac{1}{2}\cdot AD\cdot DN-\frac{1}{2}AB\cdot BM-\frac{1}{2}NC\cdot MC\)
\(=2\cdot2-\frac{1}{2}\cdot2\cdot1-\frac{1}{2}\cdot2\cdot1-\frac{1}{2}\cdot1\cdot1\)
\(=4-1-1-\frac{1}{2}=1,5\)
Ta có : \(\frac{\sqrt{4m^2-8mn+4n^2}}{3n-3m}=\frac{\sqrt{4\left(m^2-4mn+n^2\right)}}{3\left(n-m\right)}\)
\(=\frac{2\sqrt{\left(m-n\right)^2}}{3\left(n-m\right)}=\frac{2\left|m-n\right|}{3\left(n-m\right)}=\frac{2\left(n-m\right)}{3\left(n-m\right)}=\frac{2}{3}\)(vì m<n)
\(\frac{\sqrt{4m^2-8mn+4n^2}}{3n-3m}=\frac{\sqrt{4\left(m^2-4mn+m^2\right)}}{3\left(n-m\right)}=\frac{\sqrt{4\left(m-n\right)^2}}{3\left(n-m\right)}=\frac{2\left(m-n\right)}{3\left(n-m\right)}=-\frac{2}{3}\)