K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2022

\(xy+1-x^2+y=y\left(x+1\right)+\left(1-x\right)\left(x+1\right)=\left(x+1\right)\left(y+1-x\right)\)

17 tháng 1 2022

⇔(xy+y)-(x2-1)

⇔y(x+1)-(x-1)(x+1)

(x+1)(y-x+1)

21 tháng 8 2017

\(x^2+y^2-x^2y^2+xy-x-y\)

\(\Leftrightarrow x^2\left(1-y\right)\left(1+y\right)-y\left(1-y\right)-x\left(1-y\right)\)

\(\Leftrightarrow\left(1-y\right)\left(x^2+x^2y-y-x\right)\)

\(\Leftrightarrow\left(1-y\right)\left(x+y\right)\left(x-1\right)\left(x+1\right)\)

19 tháng 8 2016

=xy ( x + y ) + z ( x^2 + 2xy + y^2 ) = xy ( x + y ) + z ( x + y ) ^ 2 = ( x + y ) ( xy + xz + yz )

12 tháng 10 2019

\(y\left(x-y\right)^2+xy\left(x-y\right)\)

\(=\left(xy-y^2\right)\left(x-y\right)+xy\left(x-y\right)\)

\(=\left(xy-y^2+xy\right)\left(x-y\right)\)

\(=\left(2xy-y^2\right)\left(x-y\right)\)

12 tháng 10 2019

y ( x - y)2 + xy ( x-y) = (x - y) [(x-y) y +xy]

= (x-y) ( 2xy -y2)

17 tháng 12 2019

\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\left(\frac{y-x}{xy}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\frac{\left(x-y\right)^2}{x^2y^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2x^2y^2}{xy\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2xy}{\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}=\frac{-x^2+2xy-y^2}{\left(x-y\right)^2}\)

\(=-\frac{\left(x-y\right)^2}{\left(x-y\right)^2}=-1\)

15 tháng 10 2020

\(=\left(x^2y+xy^2\right)-\left(x+y\right)=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

15 tháng 10 2020

em cảm ơn cô @Nguyễn Linh Chi ạ !

28 tháng 7 2016

xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

28 tháng 7 2016

xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

2 tháng 10 2016

Phân tích thành nhân tử

\(=\left(my+nx\right)\left(ny+mx\right)\)

2 tháng 10 2016

mn(x+y2) +xy(m2 +n2)= mnx+mny+xym2 +xyn2

                                              =mx(nx + my) +ny( my +nx)

                                  =(mx+ny)(nx+my)

20 tháng 10 2018

     

       \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)

\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xz^2+xyz\right)+\left(y^2z+yz^2+xyz\right)\)

\(=xy\left(x+y+z\right)+xz\left(x+y+z\right)+yz\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(xy+xz+yz\right)\)

19 tháng 10 2019

nick ko hay rồi tcn còn ko hay nữa

\(2x^2+xy+x^2\)

\(=3x^2+xy\)

\(=x.\left(3x+y\right)\)

12 tháng 2 2020

\(2x^2+xy+x^2\)

\(=x\left(2x+y+x\right)\)

\(=x\left(3x+y\right)\)