K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 1 2022

1.

$k^5-k^3+k^2-1=(k^5-k^3)+(k^2-1)=k^3(k^2-1)+(k^2-1)=(k^2-1)(k^3+1)$

$=(k-1)(k+1)(k+1)(k^2-k+1)=(k-1)(k+1)^2(k^2-k+1)$

2. 

$2m^2-72+96n-32n^2$

$=2(m^2-36+48n-16n^2)$

$=2[m^2-(16n^2-48n+36)]$

$=2[m^2-(4n-6)^2]=2(m-4n+6)(m+4n-6)$

 

AH
Akai Haruma
Giáo viên
26 tháng 1 2022

3.
$(b-3a)^2-4b^2+12ab=(b-3a)^2-(4b^2-12ab)=(b-3a)^2-4b(b-3a)$

$=(b-3a)(b-3a-4b)=(b-3a)(-3a-3b)=3(3a-b)(a+b)$

4.

$(a^2-3a-10)^2-4(a^2-10)^2+12a(a^2-10)$

$=(a^2-3a-10)^2-4(a^2-10)(a^2-10-3a)$

$=(a^2-3a-10)(a^2-3a-10-4a^2+40)$

$=(a^2-3a-10)(-3a^2-3a+30)$

$=-3(a^2-3a-10)(a^2+a-10)$

$=-3(a-5)(a+2)(a^2+a-10)$

1 x mũ 2 + 4xy + 4y mũ 2 = x^2 + 4xy + 4y^2 =(2y+x)^2

2,       4x mũ 2 - 36y mũ 2 =4x^2 -36y^2 = -4 (3y-x) (3y+x)

12 tháng 2 2016

xin lỗi e mới lớp 7 ak

12 tháng 2 2016

moi hok lop 6

12 tháng 10 2021

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

28 tháng 11 2021
Lol .ngudoots
14 tháng 6 2017

Tưởng tượng nhé :v
(a+b)^2 + 3a+b)+10= t^2 +3t+10 ( đặ a+b=1)  = (t^2+3t+9/4) +31/4 >0  
=> Không thể phân tích :3

1. \(4x^2-17xy+13y^2=4x^2-4xy-13xy+13y^2=4x\left(x-y\right)-13y\left(x-y\right)=\left(x-y\right)\left(4x-13y\right)\)

2. \(2x\left(x-5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2-10x-3x-2x^2=26\Leftrightarrow-13x=26\Leftrightarrow x=-2\)

3. \(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)

\(\Leftrightarrow\left(2a-3b\right)^2-2\left(2a-3b\right)\left(2b-3a\right)+\left(2b-3a\right)^2=\left(2a-3b-2b+3a\right)^2=\left(5a-5b\right)^2\)

\(=25\left(a-b\right)^2=25\cdot100=2500\)

3 tháng 9 2018

\(a^5-a\)

\(=a\left(a^4-1\right)\)

\(=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

1 tháng 2 2018

2, a^3-3ab^2 = 5

<=> (a^3-3ab^2)^2 = 25

<=> a^6-6a^4b^2+9a^2b^4 = 25

b^3-3a^2b=10

<=> (b^3-3a^2b)^2 = 100

<=> b^6-6a^2b^4+9a^4b^2 = 100

=> 100+25 = a^6-6a^4b^2+9a^2b^4+b^6+6a^2b^4+9a^4b^2

<=> 125 = a^6+3a^4b^2+3a^3b^4+b^6 = (a^2+b^2)^3

<=> a^2+b^2 = 5

Khi đó : S = 2016.(a^2+b^2) = 2016.5 = 10080

Tk mk nha

1 tháng 2 2018

1) \(x^2+6xy+5y^2-5y-x=\left(x^2+xy-x\right)+\left(5xy+5y^2-5y\right)\)

\(=x\left(x+y-1\right)+5y\left(x+y-1\right)\)

\(=\left(x+5y\right)\left(x+y-1\right)\)

2) Ta có : \(a^3-3ab^2-5\Rightarrow\left(a^3-3ab^2\right)^2=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)

và \(b^3-3a^2b=10\Rightarrow\left(b^3-3a^2b\right)^2=100\Rightarrow b^6-6b^4a^2+9a^4b^2=100\)

\(\Rightarrow\)\(125=a^6+b^6+3a^2b^4+3a^4b^2\)

Hay \(125=\left(a^2+b^2\right)^2\Rightarrow a^2+b^2=5\)

Nên \(S=2016\left(a^2+b^2\right)=2016.5=10080\)

13 tháng 7 2018

\(3,\)Nhẩm nghiệm của đa thức trên ta đc : -1

Ta có lược đồ sau :

 11-4-4
-110-40

Phân tích thành nhân tử ta có :\(\left(x+1\right)\left(x^2-4\right)\)