Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://coccoc.com/search/math#query=Ph%C3%A2n+t%C3%ADch+%C4%91a+th%E1%BB%A9c+th%C3%A0nh+nh%C3%A2n+t%E1%BB%AD%3A+x%5E8%2B98x%5E4%2B1
x8 + 98x4 + 1 = (x8 + 2x4 + 1 ) + 96x4
= (x4 + 1)2 + 16x2(x4 + 1) + 64x4 - 16x2(x4 + 1) + 32x4
= (x4 + 1 + 8x2)2 – 16x2(x4 + 1 – 2x2) = (x4 + 8x2 + 1)2 - 16x2(x2 – 1)2
= (x4 + 8x2 + 1)2 - (4x3 – 4x )2
= (x4 + 4x3 + 8x2 – 4x + 1)(x4 - 4x3 + 8x2 + 4x + 1)
\(\left(a\right)x^8+98x^4+1\)
\(\text{ Phân tích thành nhân tử}\)
\(\left(x^4-4x^3+8x^2+4x+1\right)\left(x^4+4x^3+8x^2+\left(-4\right)x+1\right)\)
\(\left(b\right)4x^4-32x^2+1\)
\(\text{ Phân tích thành nhân tử}\)
\(-\left(28x^2-1\right)\)
cái này phân tích thành nhân tử:
vì máy tính nên ko viết đc mũ
(x mũ 4-4xmũ 3+8x mũ 2+4x+1)vì vậy biểu thức ko thể rút gọn
a) x4 + 1997x2 + 1996x +1997
= x4 + 1997x2 + 1997x - x +1997
=(x4-x) + (1997x2 +1997x+1997)
=x(x3-1) + 1997(x2+x+1)
=x(x-1)(x2+x+1) + 1997(x2+x+1)
=(x2+x+1)(x2-x) + 1997(x2+x+1)
=(x2+x+1)(x2-x+1997)
b) x2 -x -2001.2002
=x2 - x -20022 +2002
=(x2-20022)-(x-2002)
=(x-2002)(x+2002) - (x-2002)
=(x-2002)(x+2002+1)
=(x-2002)(x+2003)
c)x8 + 98x4 +1
= (x8+2x4+1) + 96x4
= (x4+1)2 + 96x4
=[(x4+1)2 + 2.(x4+1).8 + 64x4 ]+[32x4 - 16x2(x4+1)]
=(x4+1+8x2)-16x2(-2x2+x4+1)
=(x4+8x2+1)2- 16x2(x2-1)2
=(x4 + 8x2 +1)2- [4x(x2-1)]2
=(x4+8x2+1)2 - (4x3-4x)2
=(x4-4x3+8x2+4x+1)(x4+4x3+8x2-4x+1)
a) \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
b) \(4x^8+1=4x^8+4x^4+1-4x^4=\left(2x^4+1\right)^2-4x^4=\left(2x^4-2x^2+1\right)\left(2x^4+2x^2+1\right)\)
d) \(x^2+14x+48=\left(x+7\right)^2-1=\left(x+7+1\right)\left(x+7-1\right)=\left(x+8\right)\left(x+6\right)\)
\(x^8+x^4+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x+1\right)\)
\(x^5-x^4-1\)
\(=x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\)
\(=\left(x^5-x^4+x^3\right)-\left(x^3-x^2+x\right)-\left(x^2-x+1\right)\)
\(=x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
Ta có : \(x^8+14x^4+1\)
\(=x^8+2.x^4.7+1\)
\(=x^8+2.x^4.7+49-48\)
\(=\left(x^4+7\right)^2-48\)
\(=\left(x^4+7-\sqrt{48}\right)\left(x^4+7+\sqrt{48}\right)\)
a/\(=\left(x^4+1\right)^2+12x^4=\left(x^4+1\right)^2+4x^2\left(x^4+1\right)+4x^4-4x^2\left(x^4+1\right)+8x^4\)
\(=\left(x^4+1+2x^2\right)^2-4x^2\left(x^4+1-2x^2\right)=\left(x^4+2x^2+1\right)-\left(2x^3-2x\right)^2\)
\(=\left(x^4+2x^3+2x^2-2x+1\right)\left(x^4-2x^3+2x^2+2x+1\right)\)
b/\(=\left(x^4+1\right)^2+96x^4=\left(x^4+1\right)^2+16x^2\left(x^4+1\right)+64x^4-16x^2\left(x^4+1\right)+32x^4\)
\(=\left(x^4+1+8x^2\right)^2-16x^2\left(x^4+1-2x^2\right)=\left(x^4+8x^2+1\right)-\left(4x^3-4x\right)^2\)
\(=\left(x^4+4x^3+8x^2-4x+1\right)\left(x^4-4x^3+8x^2+4x+1\right)\)