Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=\left(x+2\right)3x\)
TL:
\(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(=\left(2x+1+x-1\right)\left(2x+1-x+1\right)\)
\(=3x.\left(x+2\right)\)
a) \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{9}{4}=\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)
b) \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2=\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)
a, \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{2}^2\)
\(=\left(x-\dfrac{1}{2}-\dfrac{3}{2}\right)\left(x-\dfrac{1}{2}+\dfrac{3}{2}\right)\)
\(=\left(x-2\right)\left(x+1\right)\)
b, \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\)
\(=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{2}^2\)
\(=\left(x-\dfrac{1}{2}-\dfrac{3}{2}\right)\left(x-\dfrac{1}{2}+\dfrac{3}{2}\right)\)
\(=\left(x-2\right)\left(x+1\right)\)
Chúc bạn học tốt!!!
\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left(\frac{y-x}{xy}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\frac{\left(x-y\right)^2}{x^2y^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2x^2y^2}{xy\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2xy}{\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}=\frac{-x^2+2xy-y^2}{\left(x-y\right)^2}\)
\(=-\frac{\left(x-y\right)^2}{\left(x-y\right)^2}=-1\)
a) 9 -(x-y)2
= 32 - (x-y)2
= (3-x+y).(3+x-y)
b) (x2 +4)2 - 16x2
= (x2+4)2 - (4x)2
= (x2 + 4 -4x).(x2 + 4 +4x)
\(9-\left(x-y\right)^2\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3-x+y\right)\left(3+x-y\right)\)
\(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2+4\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\left(x+2\right)^2\)
a) 16x2 - ( x2 + 4 )2
= ( 4x )2 - ( x2 + 4 )2
= [ 4x - ( x2 + 4 ) ][ 4x + ( x2 + 4 ) ]
= ( -x2 + 4x - 4 )( x2 + 4x + 4 )
= [ -( x2 - 4x + 4 ) ]( x + 2 )2
= [ -( x - 2 )2 ]( x + 2 )2
b) ( x + y )3 + ( x - y )3
= [ ( x + y ) + ( x - y ) ][ ( x + y )2 - ( x + y )( x - y ) + ( x - y )2 ]
= ( x + y + x - y )[ x2 + 2xy + y2 - ( x2 - y2 ) + x2 - 2xy + y2 ]
= 2x( 2x2 + 2y2 - x2 + y2
= 2x( x2 + 3y2 )
a, \(x^4+2013x^2+2012x+2013\)
\(=x^4+2013x^2-x+2013x+2013\)
\(=\left(x^4-x\right)+\left(2013x^2+2013x+2013\right)\)
\(=x\left(x^3-1\right)+2013\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2013\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left\{x\left(x-1\right)+2013\right\}\)
\(=\left(x^2+x+1\right)\left(x^2-x+2013\right)\)
Bài 1 :
a) \(x^8+x+1\)
\(=x^8-x^2+\left(x^2+x+1\right)\)
\(=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=\left(x^5+x^2\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=\left(x^5+x^2\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^6-x^5+x^3-x^2\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^6-x^5+x^4-x^2+1\right)\left(x^2+x+1\right)\)
b) \(64x^4+y^4\)
\(=\left(8x^2\right)^2+\left(y^2\right)^2+2.8x^2.y^2-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)
x2-2.x.1/2 +(1/2)2-9/4
=(x-1/2)2-9/4
=(x-1/2)2-(3/2)2
=(x-1/2-3/2).(x-1/2+3/2)
=(x-2)(x+1)