Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để x;y;z ra ngoài làm thừa số chung rồi quất hết phần còn lại vào ngoặc thì thành 2 nhân tử thôi bạn, kiểu như phân phối ý.
a)\(x^2+4x-4y^2-8y\)
\(=x^2+2xy+4x-2xy-4y^2-8y\)
\(=x\left(x+2y+4\right)-2y\left(x+2y+4\right)\)
\(=\left(x-2y\right)\left(x+2y+4\right)\)
b)sai đề
c)sai đề tiếp
a)x2+4x-4y2-8y=(x2-4y2)+(4x-8y)
=(x+2y(x-2y)+4(x-2y)
=(x-2y)(x+2y+4)
a, \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
b, \(1-9x+27x^2-27x^3=-\left(3x-1\right)^3\)
Mình có làm ở câu dưới rồi . Bạn tham khảo link :
https://olm.vn/hoi-dap/detail/231817932107.html
a) \(8x^3-\frac{1}{8}\)
\(=\left(2x\right)^3-\left(\frac{1}{2}\right)^3\)
\(=\left(2x-\frac{1}{2}\right)\left(4x^2+2x+\frac{1}{4}\right)\)
b) \(\frac{1}{25}x^2-64y^2\)
\(=\left(\frac{1}{5}x\right)^2-\left(8y\right)^2\)
\(=\left(\frac{1}{5}x-8y\right)\left(\frac{1}{5}x+8y\right)\)
\(\frac{2}{3}x-\frac{1}{9}x^2-1\)
\(=-\left(\frac{1}{9}x^2-\frac{2}{3}x+1\right)\)
\(=-\left[\left(\frac{1}{3}x\right)^2-2\cdot\frac{1}{3}x\cdot1+1^2\right]\)
\(=-\left(\frac{1}{3}x-1\right)^2\)
Bài 1 :
a, \(\left(a-2\right)^2-b^2=\left(a-2-b\right)\left(a-2+b\right)\)
b, \(2a^3-54b^3=2\left(a^3-27b^3\right)=2\left(a-3b\right)\left(a^2+3ab+9b\right)\)
Bài 2 : tự kết luận nhé, ngại mà lười :(
a, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\frac{4x-3}{5}-\frac{5x-4}{3}=\frac{6x-2}{7}+3\)
\(\Leftrightarrow\frac{12x-9-25x+20}{15}=\frac{6x-2+21}{7}\)
\(\Leftrightarrow\frac{-13x-29}{15}=\frac{6x+19}{7}\Rightarrow-91x-203=90x+285\)
\(\Leftrightarrow181x=-488\Leftrightarrow x=-\frac{488}{181}\)
b, \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)
\(\Leftrightarrow\frac{4x+8+9\left(2x-1\right)}{12}-\frac{10x-6}{12}=\frac{12x+5}{12}\)
\(\Rightarrow4x+8+18x-9-10x+6=12x+5\)
\(\Leftrightarrow12x+5=12x+5\Leftrightarrow0x=0\)
Vậy phương trình có vô số nghiệm
c, \(\left|2x-3\right|=4\)
Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=4\Leftrightarrow x=\frac{7}{2}\)
Với \(x< \frac{3}{2}\)pt có dạng : \(2x-3=-4\Leftrightarrow x=-\frac{1}{2}\)
d, \(\left|3x-1\right|-x=2\Leftrightarrow\left|3x-1\right|=x+2\)
Với \(x\ge\frac{1}{3}\)pt có dạng : \(3x-1=x+2\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Với \(x< \frac{1}{3}\)pt có dạng : \(3x-1=-x-2\Leftrightarrow4x=-1\Leftrightarrow x=-\frac{1}{4}\)
2, a^3-3ab^2 = 5
<=> (a^3-3ab^2)^2 = 25
<=> a^6-6a^4b^2+9a^2b^4 = 25
b^3-3a^2b=10
<=> (b^3-3a^2b)^2 = 100
<=> b^6-6a^2b^4+9a^4b^2 = 100
=> 100+25 = a^6-6a^4b^2+9a^2b^4+b^6+6a^2b^4+9a^4b^2
<=> 125 = a^6+3a^4b^2+3a^3b^4+b^6 = (a^2+b^2)^3
<=> a^2+b^2 = 5
Khi đó : S = 2016.(a^2+b^2) = 2016.5 = 10080
Tk mk nha
1) \(x^2+6xy+5y^2-5y-x=\left(x^2+xy-x\right)+\left(5xy+5y^2-5y\right)\)
\(=x\left(x+y-1\right)+5y\left(x+y-1\right)\)
\(=\left(x+5y\right)\left(x+y-1\right)\)
2) Ta có : \(a^3-3ab^2-5\Rightarrow\left(a^3-3ab^2\right)^2=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)
và \(b^3-3a^2b=10\Rightarrow\left(b^3-3a^2b\right)^2=100\Rightarrow b^6-6b^4a^2+9a^4b^2=100\)
\(\Rightarrow\)\(125=a^6+b^6+3a^2b^4+3a^4b^2\)
Hay \(125=\left(a^2+b^2\right)^2\Rightarrow a^2+b^2=5\)
Nên \(S=2016\left(a^2+b^2\right)=2016.5=10080\)
b) \(\frac{2}{3}x^3y^4-\frac{5}{3}x^5y^2\)
\(=x^3y^2\left(\frac{2}{3}y^2-\frac{5}{3}x^2\right)\)
\(=x^3y^2\left(\sqrt{\frac{2}{3}}y+\sqrt{\frac{5}{3}}x\right)\left(\sqrt{\frac{2}{3}}y-\sqrt{\frac{5}{3}}x\right)\)
d) \(x^2-25=\left(x+5\right)\left(x-5\right)\)