Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) TA CÓ:
\(a^2bc^2d-ab^2cd^2+a^2bcd^2-ab^2c^2d\)
\(=abcd\left(ac-bd+ad-bc\right)\)
\(=abcd\left[a\left(c+d\right)-b\left(c+d\right)\right]\)
\(=abcd\left(c+d\right)\left(a-b\right)\)
\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-c\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b+b-c\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b\right)-ca\left(b-c\right)\)
\(=\left(a-b\right)\left(ab-ca\right)+\left(b-c\right)\left(bc-ca\right)\)
\(=\left(a-b\right)a\left(b-c\right)+\left(b-c\right)c\left(b-a\right)\)
\(=\left(a-b\right)a\left(b-c\right)-\left(b-c\right)c\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
mình làm vội, có chỗ nào sai bạn thông cảm nha
a) \(\left(6x-1\right)^2-\left(3x+2\right)^2\)
\(=\left(6x-1+3x+2\right)\left(6x-1-3x-2\right)\)
\(=\left(9x+1\right)\left(3x-3\right)\)
\(=3\left(9x+1\right)\left(x-1\right)\)
b) \(9\left(2x+3\right)^2-4\left(x+1\right)^2\)
\(=\left(6x+9\right)^2-\left(2x+2\right)^2\)
\(=\left(6x+9+2x+2\right)\left(6x+9-2x-2\right)\)
\(=\left(8x+11\right)\left(4x+7\right)\)
c) \(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(2bc\right)^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(2bc+b^2+c^2-a^2\right)\left(2bc-b^2-c^2+a^2\right)\)
\(=-\left[\left(b+c\right)^2-a^2\right]\left(b^2-2bc+c^2-a^2\right)\)
\(=-\left(b+c-a\right)\left(b+c+a\right)\left[\left(b-c\right)^2-a^2\right]\)
\(=-\left(b+c-a\right)\left(b+c+a\right)\left(b-c-a\right)\left(b-c+a\right)\)
d) \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5\right)^2-\left(2ab+4\right)^2\)
\(=\left(a^2+b^2-5+2ab+4\right)\left(a^2+b^2-5-2ab-4\right)\)
\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-3^2\right]\)
\(=\left(a+b+1\right)\left(a+b-1\right)\left(a-b-3\right)\left(a-b+3\right)\)
\(x\left(y^2-z^2\right)+z\left(x^2-y^2\right)+y\left(z^2-x^2\right)\)
\(=x\left(y^2-z^2\right)-\left(y^2-z^2+z^2-x^2\right)z+y\left(z^2-x^2\right)\)
\(=x\left(y^2-z^2\right)-z\left(y^2-z^2\right)-z\left(z^2-x^2\right)+y\left(z^2-x^2\right)\)
\(=\left(y^2-z^2\right)\left(x-z\right)+\left(z^2-x^2\right)\left(y-z\right)\)
\(=\left(y-z\right)\left(z-x\right)\left(-\left(y+z\right)+z+x\right)\)
= \(\left(y-z\right)\left(z-x\right)\left(x-y\right)\)