K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2018

DK:  \(x\ne-3\)

\(y=\frac{x^2-9}{x+3}=\frac{\left(x-3\right)\left(x+3\right)}{x+3}=x-3\)

Nhu vay hso da cho la ham so bac nhat

NV
22 tháng 12 2022

\(y=\dfrac{1}{2}\left(x^2-1\right)\) không phải hàm số bậc nhất

23 tháng 11 2019

Quên r

23 tháng 11 2019

Điều kiện để y=(3-m).x-3 là hàm số bậc nhất a\(\ne\)0; <=> 3-m\(\ne\)0 <=> m \(\ne3\)

Điều kiện để y=(3m+7).x+2 là hàm số bậc nhất a\(\ne\)0; <=> 3m-7\(\ne\)0 <=> m\(\ne\)3/7

a) Điều kiện để để hàm số y=(3-m).x-3 // y=(3m+7).x+2 là a=a' ; b\(\ne\)b'

\(b\ne b'\Leftrightarrow-3\ne2\)

\(a=a'\Leftrightarrow3-m=3m+7\\ \Leftrightarrow4m=-4\\ \Leftrightarrow m=-1\)

Vậy để 2 hàm số bậc nhất song song thì m=1

b) Điều kiện để để hàm số y=(3-m).x-3 cắt y=(3m+7).x+2 là a\(\ne\)a' hay \(3-m\ne3m+7\Leftrightarrow m\ne-1\)

Vậy để 2 hàm số cắt nhau thì m khác -1 ; m khác 3 ; m khác 3/7

c) Bạn chỉ cần kiểm tra a có = a'; b có =b' không thôi muộn r pải off

23 tháng 11 2023

a)

Ta thấy \(\sqrt{3}-2< 0\) nên hàm số trên nghịch biến trên R

b) 

\(\sqrt{3}-7=\left(\sqrt{3}-2\right)x+5\)

\(\Leftrightarrow\sqrt{3}-12=\left(\sqrt{3}-2\right)x\)

\(\Leftrightarrow x=\dfrac{\sqrt{3}-12}{\sqrt{3}-2}\)

14 tháng 1 2017

Do b ≠ b' (vì 3 ≠ 1) nên hai đường thẳng không thể trùng nhau với mọi giá trị k.

2 tháng 12 2018

a)

đường thẳng (d1) song song với đường thẳng (d2) khi :

a = a' và  b  khác  b'

 suy ra :

\(m-1=3\)                \(\Leftrightarrow m=4\)

 vậy  đường thẳng (d1) song song với đường thẳng (d2) khi  m = 4

24 tháng 9 2023

a) Hàm số: \(y=\sqrt{\dfrac{-1}{4m-2}}x+\dfrac{1}{7}\) 

Là hàm số bậc nhất khi:

\(\dfrac{-1}{4m-2}>0\)

\(\Leftrightarrow4m-2< 0\)

\(\Leftrightarrow4m< 2\)

\(\Leftrightarrow m< \dfrac{4}{2}\)

\(\Leftrightarrow m< \dfrac{1}{2}\)

b) Ta có:

\(\sqrt{\dfrac{-1}{4m-2}}>0\forall m\ge\dfrac{1}{2}\)  

Nên hệ số góc dương nên đây là hàm số bậc nhất đồng biến 

24 tháng 9 2023

Câu b mình viết thiếu 

y = ( k2 - k + 2 )x +3 Hàm số này mới đúng nè, giúp mình với