\(\widehat{AOC}\), O...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2019

x x' y y' O m n

a) +) Vì Ox đối với Ox' và Oy đối với Oy' nên \(\widehat{xOy}\) và \(\widehat{x'Oy'}\) đối đỉnh

\(\Rightarrow\)\(\widehat{xOy}=\)\(\widehat{x'Oy'}\)

hay  \(\widehat{x'Oy'}\)\(=40^0\)

   +) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)

hay \(40^0+\widehat{x'Oy}=180^0\)

\(\Leftrightarrow\widehat{x'Oy}=180^0-40^0\)

\(\Leftrightarrow\widehat{x'Oy}=140^0\)

   +) Ta có: \(\widehat{xOy}+\widehat{xOy'}=180^0\) (kề bù)

hay \(40^0+\widehat{xOy'}=180^0\)

\(\Leftrightarrow\widehat{xOy'}=180^0-40^0\)

\(\Leftrightarrow\widehat{xOy'}=140^0\)

b) Vì \(\widehat{xOy}=\widehat{x'Oy'}\)(hai góc đối đỉnh)

Mà Om là tia phân giác của góc xOy và On là tia phân giác của x'Oy' nên Om đối On (đpcm)

27 tháng 7 2019

y m x O x' n y'

a, Vì góc x'Oy' và góc xOy là hai góc đối đỉnh, mà \(\widehat{xOy}=40^0\)nên \(\widehat{x'Oy'}=40^0\). Góc xOy và góc xOy' là hai góc kề bù nên \(\widehat{xOy}+\widehat{xOy'}=180^0\)hay \(40^0+\widehat{xOy'}=180^0\)

=> \(\widehat{xOy'}=180^0-40^0=140^0\)

Góc xOy' là góc đối đỉnh với góc xOy' nên \(\widehat{xOy}=\widehat{x'Oy}=140^0\)

b, Om,On theo thứ tự là các tia phân giác của hai góc xOy và x'Oy' nên \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}\widehat{xOy}\)và \(\widehat{nOx'}=\widehat{mOy'}=\frac{1}{2}\widehat{x'Oy'}\)mà \(\widehat{xOy}=\widehat{x'Oy'}\), do đó \(\widehat{xOm}=\widehat{mOy}=\widehat{nOx'}=\widehat{nOy'}=\frac{1}{2}\widehat{xOy}\).

Ta có : \(\widehat{xOm}=\widehat{nOy'}=\widehat{y'Ox}=\widehat{xOm}=\widehat{y'Ox}+\widehat{xOm}+\widehat{mOy}\)

\(=\widehat{y'Ox}+\widehat{xOy}=180^0\)

Góc mOn là góc bẹt,vì thế hai tia Om,On là hai tia đối nhau

30 tháng 6 2017

có muốn giải giúp ko

8 tháng 8 2019

Mk đg cần gấp giúp mk với nha mn :)))

23 tháng 7 2017

Ta có:\(\widehat{AOC}+\widehat{COM}=90độ\)

        \(\widehat{BOD}+\widehat{DOM}=90độ\)

\(\widehat{AOC}=\widehat{BOD}\)

=>\(\widehat{COM}=\widehat{DOM}\)

=>OM là tia phân giác \(\widehat{COD}\)

26 tháng 7 2019

#)Giải :

A B M N E O

a)Vì \(\widehat{AOM}\) và \(\widehat{BON}\) cùng nằm trên một mặt phẳng bờ AB

\(\Rightarrow\) Hai góc này không đối đỉnh với nhau

b) Ta có : \(\widehat{AOM}+\widehat{MON}+\widehat{BON}=180^o\Rightarrow\widehat{MON}=180^o-\left(\widehat{AOM}+\widehat{BON}\right)\)

\(=180^o-\left(30^o+30^o\right)=180^o-60^o=130^o\)

Lại có : \(\widehat{MON}+\widehat{NOE}+\widehat{EOC}=180^o=130^o+30^o+30^o\)

\(\Rightarrow\) OM và OE là hai tia đối nhau

Mà \(\widehat{AOB}\) lại là góc bẹt

\(\Rightarrow\)  Hai góc \(\widehat{AOM}\) và \(\widehat{BOE}\) là hai góc đối đỉnh

28 tháng 7 2019

cảm ơn bạn nha

8 tháng 8 2019

1. x O x' y y'

Giải: a) Ta có: \(\widehat{xOy}+\widehat{yOx'}=180^0\) (kề bù)

=> \(\widehat{yOx'}=180^0-\widehat{xOy}=180^0-75^0=105^0\)

Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)

Mà \(\widehat{xOy}=75^0\) => \(\widehat{x'Oy'}=75^0\)

 \(\widehat{yOx'}=\widehat{xOy'}\) (đối đỉnh)

Mà \(\widehat{yOx'}=105^0\) => \(\widehat{xOy'}=105^0\)

  

8 tháng 8 2019

1b) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)

mà \(\widehat{x'Oy}-\widehat{xOy}=30^0\)

=> \(2.\widehat{x'Oy}=210^0\)

=> \(\widehat{x'Oy}=210^0:2=105^0\) => \(\widehat{x'Oy}=\widehat{xOy'}=105^0\) (đối đỉnh)

          => \(\widehat{xOy}=180^0-105^0=75^0\) => \(\widehat{xOy}=\widehat{x'Oy'}=75^0\) (đối đỉnh)

2.  O x y x' y' m m'

Giải: a) Ta có: \(\widehat{xOm}=\widehat{x'Om'}\) (đối đỉnh)

          \(\widehat{mOy}=\widehat{m'Oy'}\) (đối đỉnh)

Mà \(\widehat{xOm}=\widehat{mOy}\) (gt)

=> \(\widehat{x'Om'}=\widehat{m'Oy'}\) 

Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)

Mà \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}.\widehat{xOy}\) (vì  Om là tia p/giác)

=> \(\widehat{x'Om'}=\widehat{m'Oy'}=\frac{1}{2}.\widehat{xOy}\) 

=> Om' nằm giữa Ox' và Oy'

=> Om' là tia p/giác của góc x'Oy'

b) Tự viết