K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

a, Có: Q(2) = 4a+2b+c
Q(-1) = a - b + c
=> Q(2) + Q(-1) = 5a+b+2c =0
=> Hai số này trái dấu nhau hoặc cùng bằng 0
=> đpcm
b, Có Q(1) = a+b+c = 0 (gt)
Mà Q(-1) = a -b+c = 0
=> a+b+c=a-b+c
=> b = - b
Điều này chỉ xảy ra khi b=0
Lại có Q(0) = c = 0
=> c = 0
Với b=0 ; c=0 ta có Q(x) = ax^2 = 0 với mọi x
<=> a = 0
Vậy a=b=c=0 ( đpcm )

5 tháng 4 2017

a) Q(2) = a.22 + b.2 + c = 4a + 2b + c

Q(-1) = a.(-1)2 + b.(-1) + c = a - b + c

Cộng vế với vế ta được: Q(2) + Q(-1) = 5a + b + 2c = 0

=> Q(2) = -Q(-1)

=> Q(2).Q(-1) = -Q(-1).Q(-1) = -[Q(-1)]2 \(\le0\) (đpcm)

b) Q(x)=0 với mọi x => Q(0) = 0; Q(1) = 0; Q(-1) = 0

Ta có: Q(0) = a.02 + b.0 + c = 0 => c = 0

Q(1) = a.12 + b.1 + c = a + b + 0 = 0 (1)

Q(-1) = a.(-1)2 + b.(-1) + c = a - b + 0 = 0 (2)

Từ (1) và (2) suy ra Q(1) - Q(-1) = 2b = 0 => b = 0

Thay vào (1) ta có a = 0

Vậy ta có đpcm

AH
Akai Haruma
Giáo viên
5 tháng 7 2020

Lời giải:

Ta có:

$f(-1)=a-b+c$

$f(2)=4a+2b+c$

Cộng lại ta có: $f(-1)+f(2)=5a+b+2c=0$

$\Rightarrow f(-1)=-f(2)$

$\Rightarrow f(-1)f(2)=-f(2)^2\leq 0$ (đpcm)

3 tháng 4 2017

Q(2)=a.22+b.2+c=a.4+b.2+c

Q(-1)=a.(-1)2+b.(-1)+c=a-b+c

Ta có Q(2)+Q(-1)=4a+2b+c+a-b+c=5a+b+2c=0

Như vậy Q(2) và Q(-1) là 2 số đối nhau

=> Tích của chúng luôn nhỏ hơn hoặc bằng 0 ( Bằng 0 khi cả 2 số đều bằng 0)

b) Q(x)=0 với mọi x

=>Q(0)=a.02+b.0+c=0

=>0+0+c=0

=>c=0

Q(1)=a.12+b.1+c=a+b+c=0

Theo câu a, ta có Q(-1)=a-b+c=0 ( vì giả thiết cho đa thức =0 với mọi x)

=>Q(1)-Q(-1)=a+b+c-(a-b+c)=a+b+c-a+b-c=0

=>2b=0

=>b=0

Thay b=0 và c=0 vào đa thức Q(1) ta có a+0+0=0

=>a=0

Vậy a=b=c=0

5 tháng 4 2017

tk và kb vs mk nha

ai tk mk thì mk tk lại

NV
14 tháng 2 2020

\(f\left(-1\right)=a+c-b\)

\(f\left(3\right)=9a+3b+c=10a+2b+2c+b-a-c=b-a-c\)

\(\Rightarrow f\left(-1\right).f\left(3\right)=\left(a+c-b\right)\left(b-a-c\right)=-\left(a+c-b\right)^2\le0\)

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)