Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhìn mà nhác giải vl :v
a) \(\sqrt{3x^2-2x+1}+4x=\sqrt{3x^2+2x}+1\)
<=> \(\sqrt{3x^2-2x+1}=\sqrt{3x^2+2x}+1-4x\)
<=> \(\left(\sqrt{3x^2-2x+1}\right)^2=\left(\sqrt{3x^2+2x}+1-4x\right)^2\)
<=> \(3x^2-2x+1=19x^2-8\sqrt{3x^2+2x}.x-6x+2\sqrt{3x^2+2x}+1\)
<=> \(-16x^2+8\sqrt{3x^2+2x}.x+4x-2\sqrt{3x^2+2x}=0\)
<=> \(-2\left(4x-1\right)\left(2x-\sqrt{3x^2+2x}\right)=0\)
<=> \(\hept{\begin{cases}x=\frac{1}{4}\\x=0\\x=2\end{cases}}\) <=> \(\orbr{\begin{cases}x=\frac{1}{4}\\x=0\end{cases}}\) (vì k có ngoặc vuông 3 nên mình dùng tạm ngoặc nhọn, thông cảm)
<=> \(\orbr{\begin{cases}x=\frac{1}{4}\\x=2\end{cases}}\)
b) \(\sqrt{x^2+x-2}+x^2=\sqrt{2\left(x-1\right)}+1\)
<=> \(\sqrt{x^2+x-2}=\sqrt{2\left(x-1\right)}+1-x^2\)
<=> \(\left(\sqrt{x^2+x-2}\right)^2=\left[\sqrt{2\left(x-1\right)}+1-x^2\right]^2\)
<=> \(x^2+x-2=x^4-2\sqrt{2}.x^2.\sqrt{x-1}-2x^2+2x+2\sqrt{2}.\sqrt{x-2}-1\)
<=> \(x^4-2\sqrt{2}.x^2.\sqrt{x-1}-2x^2+2x+2\sqrt{2}.\sqrt{x-1}-1=x^2+x-2\)
<=> \(-2\sqrt{2}.x^2.\sqrt{x-1}+2\sqrt{2}.\sqrt{x-1}-1=-x^4+3x^2-x-2\)
<=> \(-2\sqrt{2}.x^2.\sqrt{x-1}+2\sqrt{2}.\sqrt{x-1}=-x^4+3x^2-x-1\)
<=> \(-2\sqrt{2}.\sqrt{x-1}.\left(x^2+1\right)=-x^4+3x^2-x-1\)
<=> \(\left[-2\sqrt{2}.\sqrt{x-1}\left(x^2+1\right)\right]^2=\left(-x^4+3x^2-x-1\right)^2\)
<=> \(8x^5-8x^4-16x^3+16x^2+8x-8=x^8-6x^6+2x^5+11x^4-6x^3-5x^2+2x+1\)
<=> x = 1
d) mình làm tắt cho nhanh
d) \(\left(\sqrt{4+x}-1\right)\left(\sqrt{1-x}+1\right)=2x\)
<=> \(\sqrt{4+x}.\sqrt{x-1}+\sqrt{4+x}-\sqrt{x-1}-1=2x\)
<=> \(\sqrt{4+x}.\sqrt{1-x}+\sqrt{4+x}-\sqrt{1-x}=2x+1\)
<=> \(\sqrt{4+x}.\sqrt{x-1}+\sqrt{4+x}=2x+1+\sqrt{x-1}\)
<=> \(\left(\sqrt{4+x}.\sqrt{1-x}+\sqrt{4+x}\right)^2=\left(2x+1+\sqrt{1-x}\right)^2\)
<=> \(2\sqrt{-x+1}.\left(x+4\right)=5x^2+4x\sqrt{-x+1}+5x+2\sqrt{-x+1}-6\)
<=> \(\frac{2\sqrt{-x+1}.\left(x+4\right)}{2\left(x+4\right)}=\frac{5x^2}{2\left(x+4\right)}+\frac{4x\sqrt{-x+1}}{2\left(x+4\right)}+\frac{5x}{2\left(x+4\right)}+\frac{2\sqrt{-2x+1}}{2\left(x+4\right)}-\frac{6}{2\left(x+4\right)}\)
<=> \(\sqrt{-x+1}=\frac{5x^2+4x\sqrt{-x+1}+5x+2\sqrt{-x+1}-6}{2\left(4+x\right)}\)
<=> \(2\sqrt{-x+1}.\left(4+x\right)=5x^2+4x\sqrt{-x+1}+5x+2\sqrt{-x+1}-6\)
<=> \(-2x\sqrt{-x+1}+6\sqrt{-x+1}=5x^2+5x-6\)
<=> \(\frac{2\sqrt{-x+1}.\left(-x+3\right)}{2\left(-x+3\right)}=\frac{5x^2}{2\left(-x+3\right)}+\frac{5x}{2\left(-x+3\right)}-\frac{6}{2\left(-x+3\right)}\)
<=> \(\sqrt{-x+1}=\frac{5x^2+5x-6}{2\left(x-3\right)}\)
<=> \(\left(\sqrt{-x+1}\right)^2=\left[\frac{5x^2+5x-6}{2\left(3-x\right)}\right]^2\)
<=> \(-x+1=\frac{25x^4+50x^3-35x^2-60x+36}{36-24+4x}\)
<=> \(\hept{\begin{cases}x=0\\x=\frac{21}{25}\\x=-3\end{cases}}\)=> x = 21/25 (lý do dùng ngoặc nhọn như lý do mình ghi ở trên =))) )
=> x = 21/25
5/
Đặt \(\left\{{}\begin{matrix}\sqrt{2x-\frac{3}{x}}=a\ge0\\\sqrt{\frac{6}{x}-2x}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2+b^2=\frac{3}{x}\)
Pt trở thành:
\(a-1=\frac{a^2+b^2}{2}-b\)
\(\Leftrightarrow a^2+b^2-2a-2b+2=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x-\frac{3}{x}}=1\\\sqrt{\frac{6}{x}-2x}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-x-3=0\\2x^2+x-6=0\end{matrix}\right.\) \(\Rightarrow x=\frac{3}{2}\)
4/
ĐKXĐ: \(x\ge\frac{1}{5}\)
\(\Leftrightarrow\frac{4x-3}{\sqrt{5x-1}+\sqrt{x+2}}=\frac{4x-3}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-3=0\Rightarrow x=\frac{3}{4}\\\sqrt{5x-1}+\sqrt{x+2}=5\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{5x-1}-3+\sqrt{x+2}-2=0\)
\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{5x-1}+3}+\frac{x-2}{\sqrt{x+2}+2}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{5}{\sqrt{5x-1}+3}+\frac{1}{\sqrt{x+2}+2}\right)=0\)
\(\Leftrightarrow x=2\)
MN ƠI GIÚP MK NHA