\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)

b) \(\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2019

Áp dụng BĐT Bunhiacopxki cho cặp số \(\sqrt{x-2};\sqrt{4-x}\), ta có :

\(VT=\sqrt{x-2}+\sqrt{4-x}\le\sqrt{\left(1+1\right)\left(x-2+4-x\right)}=2\)

\(VP=x^2-6x+11=\left(x-3\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\)

Dấu " = " xảy ra \(\Leftrightarrow x=3\)

26 tháng 8 2018

1) ta có : \(x\sqrt{x}+\sqrt{x}-x-1=\sqrt{x}\left(x+1\right)-\left(x+1\right)\)

\(=\left(\sqrt{x}-1\right)\left(x+1\right)\)

2) ta có : \(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)

\(=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)

3) ta có : \(x-\sqrt{x}-2=x+\sqrt{x}-2\sqrt{x}-2\)

\(=\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}+1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\)

4) ta có : \(x-3\sqrt{x}+2=x-\sqrt{x}-2\sqrt{x}+2\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\)

5) ta có : \(-6x+5\sqrt{x}+1=-6x+6\sqrt{x}-\sqrt{x}+1\)

\(=6\sqrt{x}\left(1-\sqrt{x}\right)+\left(1-\sqrt{x}\right)=\left(6\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\)

6) ta có : \(x+4\sqrt{x}+3=x+\sqrt{x}+3\sqrt{x}+3\)

\(=\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}+1\right)=\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)\)

7) ta có : \(3\sqrt{a}-2a-1=-2a+2\sqrt{a}+\sqrt{a}-1\)

\(=-2\sqrt{a}\left(\sqrt{a}-1\right)+\left(\sqrt{a}-1\right)=\left(1-2\sqrt{a}\right)\left(\sqrt{a}-1\right)\)

8) ta có : \(x+2\sqrt{x-1}=x-1+2\sqrt{x-1}+1\)

\(=\left(\sqrt{x-1}+1\right)^2\)

9) ta có : \(7\sqrt{x}-6x-2=-6x+3\sqrt{x}+4\sqrt{x}-2\)

\(=-3\sqrt{x}\left(2\sqrt{x}-1\right)+2\left(2\sqrt{x}-1\right)=\left(2-3\sqrt{x}\right)\left(2\sqrt{x}-1\right)\)

10) ta có : \(x-5\sqrt{x}+6=x-2\sqrt{x}-3\sqrt{x}+6\)

\(=\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)

11) ta có : \(x-2+\sqrt{x^2-4}=\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-2\right)\left(x+2\right)}\)

\(=\sqrt{x-2}\left(\sqrt{x-2}+\sqrt{x+2}\right)\)

27 tháng 4 2020

f) ĐKXĐ: \(x\ge-\frac{3}{2}\)

Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)

Lũy thừa 6 cả 2 vế lên PT tương đương:

\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)

Cái ngoặc to vô nghiệm vì nó tương đương:

\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))

Vậy x = 3.

PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra

25 tháng 4 2020

@Akai Haruma, @Nguyễn Việt Lâm

giúp em vs ạ! Cần gấp ạ

em cảm ơn nhiều!

1 tháng 7 2019

b) Nhẩm thấy \(x=-2\) là nghiệm, ta xét trường hợp:

* Với \(x>-2\) thì

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}>-1+0+1=0=VP\)

* Với \(x< -2\) thì

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}< -1+0+1=0=VP\)

Do đó pt có nghiệm duy nhất \(x=-2\)

1 tháng 7 2019

c) Đặt \(\sqrt[4]{1-x}=a;\sqrt[4]{1+x}=b\)

\(\Rightarrow a^4+b^4=2\)

Theo đề bài \(a+b+ab=3\Rightarrow a+b=3-ab\)

Cần giải cái hệ (đợi một xíu em ăn xong em làm tiếp hoặc là nếu bận thì thứ 6 tuần này em làm):v \(\left\{{}\begin{matrix}a^4+b^4=3\\a+b=3-ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a^2+b^2\right)^2=3+2a^2b^2\\ab=3-a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2ab\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2\left(3-a-b\right)\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)

23 tháng 7 2019

d) Bài này có thể dùng hằng đẳng thức rồi phá dấu GTTĐ nhưng theo em là khá mất công nên bình phương lên rồi quy về pt bậc 2 cho lẹ:)

PT \(\Leftrightarrow4x^2-4x+1=x^2-6x+9\)

\(\Leftrightarrow3x^2+2x-8=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=-2\end{matrix}\right.\) (delta là ra:D)

Vậy..

23 tháng 7 2019

e) Bài này cũng vậy, em nghĩ bình phương lên cho lẹ :D

ĐK: x>= 4

\(\left(x-4\right)+4\sqrt{x-4}=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-4}=0\\\sqrt{x-4}=-4\left(L\right)\end{matrix}\right.\Rightarrow x=4\)

30 tháng 6 2019

c) \(\sqrt{x^2+6}=x-2\sqrt{x^2-1}\)

\(\Leftrightarrow\sqrt{x^2+6}+2\sqrt{x^2-1}=x\)

\(\Leftrightarrow x^2+6+4\left(x^2-1\right)+4\sqrt{\left(x^2+6\right)\left(x^2-1\right)}=x^2\)

\(\Leftrightarrow6+4x^2-4+4\sqrt{\left(x^2+6\right)\left(x^2-1\right)}=0\)

\(\Leftrightarrow4x^2+2+4\sqrt{\left(x^2+6\right)\left(x^2-1\right)}=0\)

\(\Leftrightarrow2x^2+2\sqrt{\left(x^2+6\right)\left(x^2-1\right)}+1=0\)

Dễ thấy \(VT>0\forall x\)

Do đó pt vô nghiệm

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:
a)

ĐK: \(0\leq x\leq 1\)

PT \(\Leftrightarrow \sqrt{x+\sqrt{1-x}}=1-\sqrt{x}\)

\(\Rightarrow x+\sqrt{1-x}=1+x-2\sqrt{x}\) (bình phương 2 vế)

\(\Leftrightarrow \sqrt{1-x}-1+2\sqrt{x}=0\)

\(\Leftrightarrow \frac{-x}{\sqrt{1-x}+1}+2\sqrt{x}=0\)

\(\Leftrightarrow \sqrt{x}(2-\frac{\sqrt{x}}{\sqrt{1-x}+1})=0\)

Ta thấy \(\sqrt{1-x}+1\geq 1\Rightarrow \frac{\sqrt{x}}{\sqrt{1-x}+1}\leq \sqrt{x}\leq 1< 2\) với mọi $0\leq x\leq 1$

\(\Rightarrow 2-\frac{\sqrt{x}}{\sqrt{1-x}+1}>0\Rightarrow 2-\frac{\sqrt{x}}{\sqrt{1-x}+1}\neq 0\)

Do đó $\sqrt{x}=0\Leftrightarrow x=0$ là nghiệm duy nhất

b)

ĐK: \(1 \leq x\leq \frac{1+\sqrt{5}}{2}\) hoặc \(0\geq x\geq \frac{1-\sqrt{5}}{2}\)

PT \(\Rightarrow \left\{\begin{matrix} \sqrt{x}-1\geq 0\\ 1-\sqrt{x^2-x}=x-2\sqrt{x}+1\end{matrix}\right.\) (bình phương 2 vế)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 1(1)\\ x+\sqrt{x^2-x}-2\sqrt{x}=0(2)\end{matrix}\right.\)

(1) kết hợp với ĐKXĐ suy ra \(1\leq x\leq \frac{1+\sqrt{5}}{2}(*)\)

(2) \(\Leftrightarrow \sqrt{x}(\sqrt{x}+\sqrt{x-1}-2)=0\)

Từ $(*)$ suy ra $x\neq 0$. Do đó \(\sqrt{x}+\sqrt{x-1}-2=0\)

\(\Leftrightarrow \sqrt{x-1}=2-\sqrt{x}\)

\(\Rightarrow x-1=4+x-4\sqrt{x}\) (bình phương)

\(\Leftrightarrow 4\sqrt{x}=5\Rightarrow x=\frac{25}{16}\) (thỏa mãn $(*)$)

Vậy......


30 tháng 8 2019

a,\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\) (*)(đk \(x\ge-2\))

<=> \(\sqrt{\left(x+2\right)-4\sqrt{x+2}+4}+\sqrt{\left(x+2\right)-6\sqrt{x+2}+9}\)=1

<=> \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)

<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|\)=1 (1)

TH1: \(0\le\sqrt{x+2}< 2\)

Từ (1) =>\(2-\sqrt{x+2}+3-\sqrt{x+2}=1\)

<=> \(5-2\sqrt{x+2}=1\) <=> \(2\sqrt{x+1}=4\) <=> \(\sqrt{x+1}=2\)

<=> \(x+1=4\) <=> x=3(không t/m \(\sqrt{x+2}\le2\))

TH2 : \(2\le\sqrt{x+2}\le3\)

Từ (1) =>\(\sqrt{x+2}-2+3-\sqrt{x+2}=1\)

<=> \(1=1\) (luôn đúng)

Từ TH2 <=> 4\(\le x+2\le9\) <=> \(2\le x\le7\)

TH3 \(\sqrt{x+2}>3\)

Từ (1) => \(\sqrt{x+2}-2+\sqrt{x+2}-3=1\)

<=> \(2\sqrt{x+2}=6\) <=> \(\sqrt{x+2}=3\) <=> \(x+2=9\) <=> x=7 (không t/m \(\sqrt{x+2}>3\))

Vậy pt (*) có tập nghiệm S=\(\left\{2\le x\le7\right\}\)

b, \(x^2-10x+27=\sqrt{6-x}+\sqrt{x-4}\) (*) (đk :\(4\le x\le6\))

Vs a,b \(\ge0\) ta có \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a^2+b^2\right)}\)(tự CM nha)

Dấu "=" xảy ra <=> a=b

Áp dụng bđt trên ta có: \(\sqrt{6-x}+\sqrt{x-4}\le\sqrt{2\left(6-x+x-4\right)}=\sqrt{2.2}=2\)

<=> \(\sqrt{6-x}+\sqrt{x-4}\le2\)(1)

Lại có: \(x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)

<=> \(x^2-10x+27\ge2\) (2)

Từ (1),(2) => Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}6-x=x-4\\x-5=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}6+4=2x\\x=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=5\\x=5\end{matrix}\right.\left(tm\right)\)

Vậy pt (*) có tập nghiệm S=\(\left\{5\right\}\)

c, \(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)(*) (đk: x\(\ge0\))

<=> \(x\left(x-2\right)-\sqrt{x}\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)

<=> \(\left(x-\sqrt{x}\right)\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)

<=> \(\sqrt{x}\left(\sqrt{x}-1\right)\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)

<=> \(\left(\sqrt{x}-1\right)\left[\sqrt{x}\left(x-2\right)-4\right]=0\)

<=> \(\left[{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{x}\left(x-2\right)-4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}\left(x-2\right)=4\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x\left(x-2\right)^2=16\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=1\\x\left(x^2-4x+4\right)-16=0\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}x=1\\x^3-4x^2+4x-16=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=1\\x^2\left(x-4\right)+4\left(x-4\right)=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=1\\\left(x^2+4\right)\left(x-4\right)=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x-4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\left(tm\right)\)

Vậy pt (*) có tập nghiệm S=\(\left\{1;4\right\}\)

31 tháng 8 2019

d) x2+3x+1=(x+3)\(\sqrt{x^2+1}\)

<=>(\(\sqrt{x^2+1}-3x+3\sqrt{x^2+1}-\left(x^2+1\right)=0\)

<=>\(\left(\sqrt{x^2+1}-3\right)\left(x-\sqrt{x^2+1}\right)=0\)

<=>\(\sqrt{x^2+1}=3\) hoặc \(x=\sqrt{x^2+1}\)

=>x=\(2\sqrt{2}\)

1 tháng 7 2019

tth, Hoàng Tử Hà, Bonking, Quoc Tran Anh Le, Vũ Huy Hoàng,

Akai Haruma, @Nguyễn Việt Lâm

giúp mk vs! ngày mai phải nộp r

18 tháng 6 2019

Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html