Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình có 2 nghiệm x1, x2 ⇔ △ ≥ 0 ⇔ m2 - 4m + 4 ≥ 0 ⇔ (m-2)2 ≥ 0 ⇔ m ∈ R
Theo hệ thức Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=m-1\end{matrix}\right.\)
=> P = \(\dfrac{2x_1.x_2+3}{x_1^2+x_2^2+2\left(1+x_1.x_2\right)}=\dfrac{2x_1.x_2+3}{x_1^2+x_2^2+2x_1.x_2+2}\)
= \(\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}\)
= \(\dfrac{2\left(m-1\right)+3}{m^2+2}\)
= \(\dfrac{2m+1}{m^2+2}\)
=> P(m2 + 2) = 2m + 1 => Pm2 - 2m + 2P - 1 = 0 (*)
Để m tồn tại thì phương trình (*) có nghiệm ⇔ △' ≥ 0
⇔ 1 - P(2P - 1) ≥ 0
⇔ 1 - 2P2 + P ≥ 0
⇔ (1 - P)(2P + 1) ≥ 0
⇔ \(-\dfrac{1}{2}\) ≤ P ≤ 1
P = \(-\dfrac{1}{2}\) ⇔ m = -2; P = 1 ⇔ m = 1
Vậy minP = \(-\dfrac{1}{2}\) ⇔ m = -2 ; maxP = 1 ⇔ m = 1
\(A^2=\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}-2\cdot\sqrt{\dfrac{x_1}{x_2}\cdot\dfrac{x_2}{x_1}}\)
\(=\dfrac{x_1^2+x_2^2}{x_1x_2}-2\)
\(=\dfrac{\left(-5\right)^2-2\cdot4}{4}-2=\dfrac{25-8-8}{2}=\dfrac{9}{2}\)
=>A=3/căn 2
a) Đặt \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m-4\right)=m^2+m+5=\left(m+\frac{1}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}>0\forall m\)
=>pt luôn có 2 nghiệm phân biệt với mọi m
b) Gọi x1;x2 là 2 nghiệm phân biệt của pt. Theo hệ thức Vi-ét: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=m-4\end{cases}}\)
c) \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\Leftrightarrow\left(2m+2\right)^2-2\left(m-4\right)=10\)
\(\Leftrightarrow4m^2+8m+4-2m+8=10\Leftrightarrow4m^2+6m+2=0\Leftrightarrow2m^2+3m+1=0\)
\(\Leftrightarrow2m^2+2m+m+1=0\Leftrightarrow2m\left(m+1\right)+\left(m+1\right)=0\Leftrightarrow\left(m+1\right)\left(2m+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\2m+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=-1\\m=-\frac{1}{2}\end{cases}}\)
áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1x_2=-2\\x_1+x_2=-\dfrac{5}{3}\end{matrix}\right.\)
\(\Rightarrow y_1=x_1+\dfrac{1}{x_2}=\dfrac{x_1x_2+1}{x_2}=\dfrac{-1}{x_2}\)
\(y_2=x_2+\dfrac{1}{x_1}=\dfrac{x_1x_2+1}{x_1}=\dfrac{-1}{x_1}\)
\(\Rightarrow y_1y_2=\dfrac{-1}{x_1}.\dfrac{-1}{x_2}=\dfrac{1}{x_1x_2}=\dfrac{-1}{2}\)
\(y_1+y_2=\dfrac{-1}{x_1}-\dfrac{1}{x_2}=\dfrac{-x_2-x_1}{x_1x_2}=\dfrac{-\left(x_1+x_2\right)}{x_1x_2}=-\dfrac{5}{6}\)
áp dụng hệ thức vi ét đảo ta có : \(y_1;y_2\) là nghiệm của phương trình :
\(X^2+\dfrac{5}{6}X-\dfrac{1}{2}=0\Leftrightarrow6X^2+5X-3=0\)
bạn viết lại bth nhé
\(\Delta=25-4\left(-3\right).2=25+24=49>0\)
Vậy pt luôn có 2 nghiệm pb
theo Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+3}{2}\\x_1.x_2=\dfrac{m+1}{4}\end{matrix}\right.\)
để \(\dfrac{x_1+x_2}{x_1.x_2}< 4\)
<=>\(\dfrac{\dfrac{2m+3}{2}}{\dfrac{m+1}{4}}< 4\)<=>\(\dfrac{2\left(2m+3\right)}{m+1}< 4\)
<=>4m+6<4m+4<=>6<4
không có giá trị m nào để \(\dfrac{x_1+x_2}{x_1.x_2}< 4\)
1:
Δ=(2m-4)^2-4(m^2-3)
=4m^2-16m+16-4m^2+12=-16m+28
Để PT có hai nghiệm phân biệt thì -16m+28>0
=>-16m>-28
=>m<7/4
2: x1^2+x2^2=22
=>(x1+x2)^2-2x1x2=22
=>(2m-4)^2-2(m^2-3)=22
=>4m^2-16m+16-2m^2+6=22
=>2m^2-16m+22=22
=>2m^2-16m=0
=>m=0(nhận) hoặc m=8(loại)
3: A=x1^2+x2^2+2021
=2m^2-16m+2043
=2(m^2-8m+16)+2011
=2(m-4)^2+2011>=2011
Dấu = xảy ra khi m=4
Theo hệ thức Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{2}\\x_1x_2=\dfrac{1}{2}\end{matrix}\right.\)
Giả sử pt bậc 2 cần tìm có các nghiệm:
\(\left\{{}\begin{matrix}x_3=\dfrac{x_1}{x_2+1}\\x_4=\dfrac{x_2}{x_1+1}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{x_1}{x_2+1}+\dfrac{x_2}{x_1+1}\\x_3x_4=\left(\dfrac{x_1}{x_2+1}\right)\left(\dfrac{x_2}{x_1+1}\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{x_1^2+x_2^2+x_1+x_2}{x_1x_2+x_1+x_2+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2+x_1+x_2}{x_1x_2+x_1+x_2+1}\\x_3x_4=\dfrac{x_1x_2}{x_1x_2+x_1+x_2+1}\end{matrix}\right.\)
Thay số:
\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{31}{16}\\x_3x_4=\dfrac{1}{8}\end{matrix}\right.\)
Theo định lý Viet đảo, \(x_3;x_4\) là nghiệm của:
\(x^2-\dfrac{31}{16}x+\dfrac{1}{8}=0\Leftrightarrow16x^2-31x+2=0\)
Lời giải:
Theo định lý Viet: $x_1+x_2=\frac{5}{2}=2,5; x_1x_2=\frac{1}{2}=0,5$
Khi đó:
\(\frac{x_1}{x_2+1}.\frac{x_2}{x_1+1}=\frac{x_1x_2}{(x_2+1)(x_1+1)}=\frac{x_1x_2}{x_1x_2+(x_1+x_2)+1}=\frac{0,5}{0,5+2,5+1}=\frac{1}{8}\)
\(\frac{x_1}{x_2+1}+\frac{x_2}{x_1+1}=\frac{x_1^2+x_1+x_2^2+x_2}{(x_1+1)(x_2+1)}=\frac{(x_1+x_2)^2-2x_1x_2+(x_1+x_2)}{x_1x_2+(x_1+x_2)+1}\)
\(=\frac{2,5^2-2.0,5+2,5}{0,5+2,5+1}=\frac{31}{16}\)
Khi đó áp dụng định lý Viet đảo thì $\frac{x_1}{x_2+1}$ và $\frac{x_2}{x_1+1}$ là nghiệm của pt:
$x^2-\frac{31}{16}x+\frac{1}{8}=0$