\(x^2-x-5=0\) . Không giải phương trình, hãy tí...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

Theo định lí Vi-et , ta có : \(\begin{cases}x_1+x_2=1\\x_1.x_2=-5\end{cases}\)

  • \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=1-2.\left(-5\right)=11\)
  • \(B=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=1-3.\left(-5\right).1=16\)
  • \(C=\left(2x_1+x_2\right)\left(2x_2+x_1\right)=\left(1+x_1\right)\left(1+x_2\right)=\left(x_1+x_2\right)+x_1.x_2+1=1-5+1=-3\)
14 tháng 1 2018

viet dc k bạn

2 tháng 4 2018

\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)

Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)

=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)

Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)

2 tháng 6 2020

Do \(x_1< x_2\). Do đó: \(x_1=\frac{2n-1-1}{2}=n-1\) và \(x_2=\frac{2n-1+1}{2}=n\)

Ta có \(x_1^2-2x_2+3=\left(n-1\right)^2-2n+3\)

\(=n^2-2n+1-2n+3=n^2-4n+4=\left(n-2\right)^2\ge0\)

Dấu "=" xảy ra <=> n=2

2 tháng 6 2020

Vì x< x2.Do đó x1=\(\frac{2n-1-1}{2}=n-1\)và x2=\(\frac{2n-1+1}{2}=n\)

Ta có:\(x_{1_{ }}^{2^{ }^{ }}-2x_{2_{ }}+3=\left(n-1\right)^2-2n+3\)

\(=n^2-2n+1-2n+3=n^2-4n+4=\left(n-2\right)^2\ge0\)

15 tháng 10 2018

tham số là gì ??????????????????????

10 tháng 5 2019

a, m=2

\(x^2-4x+3=0\)

=>\(\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

b, Phương trình có nghiệm 

=> \(\Delta'\ge0\)

=> \(m^2-m^2+m-1\ge0\)=>\(m\ge1\)

Theo Vi-ét ta có 

\(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{cases}}\)

Vì \(x_2\)là nghiệm của phương trình nên \(x^2_2-2mx_2+m^2-m+1=0\)=>\(2mx_2=x_2^2+m^2-m+1\)

Khi đó

\(\left(x_1^2+x_2^2\right)-3x_1x_2-3+m^2-m+1=0\)

=>\(\left(x_1+x_2\right)^2-5x_1x_2+m^2-m-2=0\)

=> \(4m^2-5\left(m^2-m+1\right)+m^2-m-2=0\)

=> \(m=\frac{7}{4}\)( thỏa mãn \(m\ge1\)

Vậy \(m=\frac{7}{4}\)

10 tháng 5 2019

x2_2eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

10 tháng 5 2019

toi xin loi ban 

15 tháng 10 2018

à đây là lớp 9 mà mình tưởng lớp 6 !??