Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\Leftrightarrow x^2-2x+1-2\left|x-1\right|-3=0\)
\(\Leftrightarrow\left(\left|x-1\right|\right)^2-2\left| x-1\right|-3=0\)
\(\Leftrightarrow\left(\left|x-1\right|-3\right)\left(\left|x-1\right|+1\right)=0\)
=>x-1=3 hoặc x-1=-3
=>x=4 hoặc x=-2
Giải:
4.Theo đề bài ta có:
\(A=7.a+4 \)
\(=17.b+3 \)
\(=23.c+11 (a,b,c ∈ N)\)
Nếu ta thêm 150 vào số đã cho thì ta lần lượt có:
\(A+150=7.a+4+150=7.a+7.22=7.(a+22)\)
\(=17.b+3+150=17.b+17.9=17.(b+9)\)
\(=23.c+11+150=23.c+23.7=23.(c+7) \)
\(\Rightarrow A+150⋮7;17;23\).Nhưng 7, 17 và 23 là ba số đôi một nguyên tố cùng nhau, suy ra \(A+150⋮7.17.13=2737\)
Vậy \(A+150=2737k\left(k=1;2;3;4;...\right)\)
Suy ra: \(A=2737k-150=2737k-2737+2587=2737(k-1)+2587=2737k+2587\)
Do \(2587<2737\)
\(\Rightarrow A\div2737\) dư \(2587\)
Ta có: a=\(3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3a=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3a-a=3^{101}-3\)
Hay 2a=3^101-3
a) Ta có:\(2a+3=3^n\)
\(\left(3^{101}-3\right)+3=3^n\)
\(\Rightarrow3^{101}=3^n\)
Vậy n=101
Chúc hok tốt nha!!!
\(A=3+3^2+3^3+.........+3^{100}\)
\(\Leftrightarrow3A=3^2+3^3+.........+3^{100}+3^{101}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+.....+3^{101}\right)-\left(3+3^2+......+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3\)
\(\Leftrightarrow2A+3=3^{101}\)
Mà \(2A+3=3^n\)
\(\Leftrightarrow3^{101}=3^n\)
\(\Leftrightarrow n=101\)
Vậy ..
A = 3 + 32 + 33 + ... + 3100
\(\Rightarrow\) 3A = 32 + 33 + 34 + ... + 3101
\(\Rightarrow\) 3A - A = (32 + 33 + 34 + ... + 3101) - (3 + 32 + 33 + ... + 3100)
\(\Rightarrow\) 2A = 3101 - 3
\(\Rightarrow\) 2A + 3 = 3101
\(\Rightarrow\) 3101 = 3n
\(\Rightarrow\) n = 101
a/ Ta có: n + 10 \(⋮\) n + 3 ( n \(\in\) Z )
\(\Rightarrow n+3+7⋮n+3\)
\(\Rightarrow\) 7 \(⋮\) n + 3
\(\Rightarrow\) n + 3 \(\in\) Ư(7) = { -1 ; 1 ; -7 ; 7 }
\(\Rightarrow\) n \(\in\) { -4 ; -2 ; -10 ; 4 }
Câu b làm t. tự tách n - 15 thành n + 2 - 17
- 17 \(⋮\) n + 2
Câu c tách 2n - 17 thành 2( n - 3 ) - 11
- 11 \(⋮\) n - 3
d/ Ta có: \(n^2+n+10\) \(⋮\) n + 2 ( n \(\in\) Z )
\(\Leftrightarrow\) n( n + 2 ) - n + 10 \(⋮\) n + 2
\(\Leftrightarrow\) n( n + 2 ) - n + 2 + 8 \(⋮\) n + 2
Vì n( n + 2 ) \(⋮\) n + 2 và ( - n + 2) \(⋮\) n + 2
\(\Rightarrow\) 8 \(⋮\) n + 2
\(\Rightarrow\) n + 2 \(\in\) Ư (8) = { -1 ; 1 ; -2 ; 2 ; -4 ; 4 ; -8 ; 8 }
\(\Rightarrow\) n \(\in\) { -3 ; -1 ; -4 ; 0 ; -6 ; 2 ; -10 ; 6 }
Chúc bạn học tốt!!!
1 ) 10 \(⋮\) n
=> n \(\in\) Ư ( 10 )
Ư ( 10 ) = { 1 , 2 , 5 , 10 }
Vậy n \(\in\) { 1 ; 2 ; 5 ; 10 }
2 ) 12 : \(⋮\) ( n - 1 )
=> n - 1 \(\in\) Ư ( 12 )
=> Ư ( 12 ) = { 1 ; 12 ; 2 ; 6 ; 3 ; 4 }
n - 1 | 1 | 12 | 2 | 6 | 3 | 4 |
n | 2 | 13 | 3 | 7 | 4 | 5 |
Vậy n \(\in\) { 2 , 13 , 3 , 7 , 4 , 5 }
3 ) 20 \(⋮\) ( 2n + 1 )
=> 2n + 1 \(\in\) Ư ( 20 )
=> Ư ( 20 ) = { 1 ; 20 ; 2 ; 10 ; 4 ; 5 }
2n+1 | 1 | 20 | 2 | 10 | 4 | 5 |
n | 0 | 19/2 ( loại ) | 1/2 ( loại ) | 9/2 ( loại ) | 3/2 ( loại ) | 2 |
Các trường hợp loại , vì n \(\in\) N
Vậy n thuộc { 0 , 2 }
a, \(\overline{357a}⋮2\Leftrightarrow a=0;2;4;6;8\) (thỏa mãn)
b, \(\overline{429a}⋮5\Leftrightarrow a=0;5\) (thỏa mãn)
c, \(\overline{3a51a}⋮9\Leftrightarrow\left(3+a+5+1+a\right)⋮9\)
<=> 9 + 2a \(⋮9\)
<=> 2a \(⋮9\)
Mà a là chữ số => a = 0; 9 (thỏa mãn)
d, \(\overline{4a231}⋮3\Leftrightarrow\left(4+a+2+3+1\right)⋮3\)
<=> 10 + a \(⋮3\)
<=> 9 + 1 + a \(⋮3\)
<=> 1 + a \(⋮3\)
Mà a là chữ số => a = 2; 5; 8 (thỏa mãn)
e, \(\overline{5a37a}⋮10\Rightarrow\overline{5a37a}⋮5\Rightarrow a=0;5\)
Mà \(\overline{5a37a}⋮2\Rightarrow a=0\) (thỏa mãn)
@Đỗ Hàn Thục Nhi
3A=32+33+34+.....+3101
- A=3+32+33+....+3100
=2A=3101-3
=>A=(3101-3):2
2A+3=3n
=>3101-3+3=3n
=>3101=3n
=>n=101
2A + 3 = 3A - A + 3 = (32 + 33 + 34 + ... + 3101) - (3 + 32 + 33 + ... + 3100) + 3 = 3101 - 3 + 3 = 3101 .Vậy n = 101