K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

n2+2n-1 = n2-3n+5n-15+14 = -n(3-n)-5(3-n)+14

Ta thấy, -n(3-n)-5(3-n)=-(3-n)(n+5) luôn chia hết cho 3-n

=> Để biểu thức chia hết cho 3-n thì 14 chia hết cho 3-n

=> 3-n={-14; -7; -2; -1; 1; 2; 7; 14}

=> n={17, 10, 5, 4, 2, 1, -4, -11}

30 tháng 7 2021

 . .......................................................................................................................................jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 tháng 1

Tự làm đi, chắc là BTVN được giao hả, phải luyện


27 tháng 8 2020

1/ 

10 chia hết cho n => n \(\in\)Ư(10) = {1;2;5;10}

2/ 12 chia hết cho n - 1 => n - 1 \(\in\)Ư(12) = {1;2;3;4;6;12}

=> n \(\in\){2;3;4;5;7;13}

3/ 20 chia hết cho 2n + 1 => 2n + 1 \(\in\)Ư(20) = {1;2;4;5;10;20}

=> 2n \(\in\){0;1;3;4;9;19}

=> n \(\in\){0;2} ( tại vì đề bài cho số tự nhiên nên chỉ có 2 số đây thỏa mãn)

4 / n \(\in\)B(4) = {0;4;8;12;16;20;24;...}

Mà n < 20 => n \(\in\){0;4;8;12;16}

5. n + 2 là ước của 30 => n + 2 \(\in\)Ư(30) = {1;2;3;5;6;10;15;30}

=> n \(\in\){0;1;3;4;8;13;28} (mình bỏ số âm nên mình không muốn ghi vào )

6. 2n + 3 là ước của 10 => 2n + 3 \(\in\)Ư(10) = {1;2;5;10}

=> 2n \(\in\){2;7} (tương tự mình cx bỏ số âm)

=> n = 1 

7. n(n + 1) = 6 = 2.3 => n = 2

4 tháng 2 2018

a, n+5 chia hết cho n-1 => n-1+6 chia hết cho n-1 => 6 chia hết cho n-1 hay n-1 thuộc Ư(6)

=> n-1={1,-1,2,-2,3,-3,6,-6} 

=>n={2,0,3,-1,4,-2,7,-5}

Các TH khác tương tự nk

4 tháng 2 2018

b, 2n-4=2(n+2)-8

c, 6n+4=3(2n+1)+1

21 tháng 2 2018

chắc chắn là thằng pain nó bị sml oi

20 tháng 1 2018

đã lỡ yêu em rồi :((

30 tháng 9 2017

a) ta có 2n+5 chia het cho n+2 

=> 2(n+2)+1 chia het cho n+2

nên n+2 thuộcƯ(1)

=> n = -3 hoac n=-1

10 tháng 7 2017

a)n=1

b)n=9

c)n=4

d)n=8

24 tháng 11 2015

Cristiano Ronaldo : đưa nick của Trần Thùy Dung và Monkey D.Luffy đây

24 tháng 11 2015

 

 Đặt A(n) = 11^(n+2) + 12^(2n+1) 
khỏi suy nghĩ nhiều, ta dùng qui nạp nhé: 

* n = 0: A(0) = 11² + 12 = 133 chia hết cho 133 

* giả sử A(k) chia hết cho 133, 

ta có: A(k) = 11^(k+2) + 12^(2k+1) chia hết cho 133 

ta cm A(k+1) chia hết cho 133 

A(k+1) = 11^(k+1+2) + 12^(2k+2+1) = 

= 11^(k+2).11 + 12^(2k+1).12² 

= 11.[11^(k+2)+12^(2k+1)] + (12²-11).12^(2k+1) 

= 11.A(k) + 133.12^(2k+1) 

Do giả thiết qui nạp A(k) chia hết cho 133 và 133.12^(2k+1) chi hết cho 133 
nên ta có A(k+1) chia hết cho 133 

tóm lại A(n) chia hết cho 133 với mọi n thuộc N

Vậy ...