Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng Minh:C=\(3^0+3^2+3^4+...+3^{2002}⋮7\)
Nhân C với \(3^2\)ta có:
\(9S=3^2+3^4+3^6+...+3^{2004}\)
\(\Rightarrow9S-S=\left(3^2+3^4+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)
\(\Rightarrow8S=3^{2004}-1\)
\(\Rightarrow S=\dfrac{3^{2004}-1}{8}\)
Chứng minh:
Ta có:\(3^{2004}-1=\left(3^6\right)^{334-1}=\left(3^6-1\right).a=7.104.a\)
\(\)UCLN(7;8)=1
\(\Rightarrow S⋮7\)
Sửa lại 1 chút!
Chứng minh: C= \(3^0+3^2+3^4+3^6+...+3^{2002}\) chia hết cho 7
\(S=\dfrac{3}{5.7}+\dfrac{3}{7.9}+....+\dfrac{3}{59.61}\)
\(S=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+......+\dfrac{1}{59}-\dfrac{1}{61}\)
\(S=\left(\dfrac{1}{5}-\dfrac{1}{7}\right)+\left(\dfrac{1}{7}-\dfrac{1}{9}\right)+...+\left(\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(S=\dfrac{1}{5}-\dfrac{1}{61}\)
\(S=\dfrac{56}{305}\)
Vậy S = \(\dfrac{56}{305}\)
\(S=\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)
\(S=\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(S=\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)=\dfrac{3}{2}.\dfrac{56}{305}=\dfrac{84}{305}\)
A =\(\dfrac{4}{2.5}+\dfrac{4}{5.8}+\dfrac{4}{8.11}+...+\dfrac{4}{65.68}\)
A = \(\dfrac{4}{3}.\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{65.68}\right)\)
A = \(\dfrac{4}{3}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{8}-\dfrac{1}{8}\right)-\left(\dfrac{1}{11}-\dfrac{1}{11}\right)-...-\left(\dfrac{1}{65}-\dfrac{1}{65}\right)-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-0-0-0-...-0-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\dfrac{33}{68}\)
A = \(\dfrac{11}{17}\)
\(M=\dfrac{5^3}{1\cdot6}+\dfrac{5^3}{6\cdot11}+...+\dfrac{5^3}{26\cdot31}\)
\(=5^2\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{26\cdot31}\right)\)
\(=5^2\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)
\(=5^2\left(1-\dfrac{1}{31}\right)\)\(=25\cdot\dfrac{30}{31}=\dfrac{750}{31}\)
ta có ab3=3/4.3ab
=> 3.ab3=4.3ab
=> 3.(100a+10b+3)=4.(300+10a+b)
= 300a+30b+9=1200+40a+4b
=>(300a-40a)+(30b-4b)=1200-9
=260a+26b=1196
=26.(10a+b)=1196
=>10a+b=1196:26
=10a+b=46
=>10a+b=10.4+6
=>a=4:b=6
Ta có:A-1=\(\dfrac{10^8+2}{10^8-1}-1=\dfrac{10^8+2-10^8+1}{10^8-1}=\dfrac{3}{10^8-1}\)
B-1=\(\dfrac{10^8}{10^8-3}-1=\dfrac{10^8-10^8+3}{10^8-3}=\dfrac{3}{10^8-3}\)
Do \(\dfrac{3}{10^8-1}>\dfrac{3}{10^8-3}\)
=>A-1>B-1
<=>A>B
Vậy...
\(\left(2^{19}.27^3+15.4^9.9^4\right):\left(6^9.2^{10}+12^{10}\right)\)
\(=\left[2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4\right]:\left[2^9.3^9.2^{10}+2^{10}.6^{10}\right]\)
\(=\left(2^{19}.3^9+3.5.2^{18}.3^8\right):\left(2^{19}.3^9+2^{10}.2^{10}.3^{10}\right)\)
\(=\left(2^{19}.3^9+5.3^9.2^{18}\right):\left(2^{19}.3^9+2^{20}.3^{10}\right)\)
\(=2^{18}.3^9.\left(1.2+5\right):2^{19}.3^9.\left(1+2.3\right)\)
\(=\left(2^{18}.3^9.7\right):\left(2^{18}.2.3^9.7\right)\)
\(=1:2\)
\(=0.5\)
Tuy có vẻ hơi muộn nhưng thôi
Nếu A là số tự nhiên ⇒ \(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)
\(\Rightarrow7^{2004}-3^{92^{94}}⋮10\)
Thật vậy, ta có :
72004 với lũy thừa là 2004 ⋮ 4
⇒ 72004 = ( .......... 9 )
392^94 với lũy thừa là 9294 mà 92 ⋮ 4 ⇒ 9294 ⋮ 4
⇒ 392^94 = ( .......... 9 )
⇒ 72004 - 392^94 = ( .......... 9 ) - ( ............ 9) = ( ........... 0 ) ⋮ 10
⇒ \(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)
A=1/10.(72004-392^94) là số tự nhiên.
\(4x\cdot\left(x:2\right)-3\left(1-2x\right)=7-2\left(x+1\right)\)
\(\Leftrightarrow4x\cdot\dfrac{x}{2}-3+6x=7-2x-2\)
\(\Leftrightarrow2x\cdot x-3+6x=5-2x\)
\(\Leftrightarrow2x^2-3+6x=5-2x\)
\(\Leftrightarrow2x^2-3+6x-5+2x=0\)
\(\Leftrightarrow2x^2-8+8x=0\)
\(\Leftrightarrow2\left(x^2-4+4x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2+2\sqrt{2}\\x=-2-2\sqrt{2}\end{matrix}\right.\)
Vậy \(x_1=-2-2\sqrt{2};x_2=-2+2\sqrt{2}\)
\(4x\left(x:2\right)-3x\left(1-2x\right)=7-2\left(x+1\right)\)
\(\Leftrightarrow4x.\dfrac{x}{2}-3+6x-7+2x+2=0\Leftrightarrow2x^2+8x-8=0\Leftrightarrow2\left(x^2+4x-4\right)=0\)
\(\Leftrightarrow\left(x^2+4x+4\right)-8=0\)
\(\Leftrightarrow\left(x+2\right)^2=8\Rightarrow\left[{}\begin{matrix}x-2=\sqrt{8}\\x-2=-\sqrt{8}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}+2\\x=-\sqrt{8}+2\end{matrix}\right.\)
Ta có:
\(\dfrac{1}{a+b+c}=\overline{0,abc}\)
\(\Leftrightarrow\dfrac{1000}{a+b+c}=abc\)
\(\Leftrightarrow abc\left(a+b+c\right)=1000\)
\(\Rightarrow\left\{{}\begin{matrix}a\ne0\\a+b+c< 10\end{matrix}\right.\)
Tích \(1\) số có \(1\) chữ số và một số có \(3\) chữ số là \(1000\) có các trường hợp sau:
\(125.8=1000\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=5\end{matrix}\right.\)
\(250.4=1000\) (loại)
\(500.2=1000\) (loại)
Vậy: \(\left\{{}\begin{matrix}a=1\\b=2\\c=5\end{matrix}\right.\)