Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6,
=a4 [-(a-b)-(c-a)] + [b4(c-a)+c4(a-b)]
=rồi nhóm hạng tử chung lại
=và sau đó tách ra bằng hằng đẳng thức
kết quả =(a-b)(c-a)(c-b)(a2+b2+c2+ab+bc+ca)
Bài này khá dài nên mk nhác viết , bn cố gắng làm bài nhé !
a) \(4a^3b^3c^2x+12a^3b^4c^2-16a^4b^5cx\)
\(=4a^3b^3c\left(cx+3bc-4ab^2x\right)\)
b) \(\left(b-2c\right)\left(a-b\right)-\left(a+b\right)\left(2c-b\right)\)
\(=\left(b-2c\right)\left(a-b+a+b\right)=2a\left(b-2c\right)\)
c) \(3a\left(a+5\right)-2\left(5+a\right)=\left(a+5\right)\left(3a-2\right)\)
d) \(\left(x+1\right)^2-3\left(x+1\right)=\left(x+1\right)\left(x+1-3\right)\)
4. Đặt t= a^2 +a
Suy ra t^2 +4t - 12 = (t-2)(t+6) = (a^2+a-2) (a^2+a +6) = (a-1)(a+2)(a^2+a+6)
5. Đặt t = x^2 +x+1
Ta có: t(t+1) -12
= t^2 +t-12
= (t-3)(t+4)
= ( x^2 +x -2 ) (x^2+x+5)
= (x-1) ( x+2) (x^2+x+5)
6. x^8 + x^7 + x^6 - x^7- x^6 - x^5 + x^5+ x^4 + x^3- x^4- x^3- x^2 + x^2 + x +1
= (x^2 +x+1) ( x^6 - x^5 +x^3 -x^2 +1)
7. x^10 + x^9 +x^8 - x^9- x^8- x^7 +x^7+x^6+x^5 - x^6-x^5 - x^4 + x^5+ x^4 + x^3 - x^3 - x^2 - x + x^2 + x +1
= (x^2 + x + 1) ( x^8 -x^7 + x^5 - x^4 + x^3 -x + 1)
a3 - 7a - 6
= a3 - a - 6a - 6
= a ( a2 - 1 ) - 6 ( a + 1 )
= a ( a - 1 ) ( a + 1 ) - 6 ( a + 1 )
= ( a + 1 ) [ ( a ( a - 1 ) - 6 ]
= ( a + 1 ) ( a2 - a - 6 )
= ( a + 1 ) ( a2 + 2a - 3a - 6 )
= ( a + 1 ) ( a + 2 ) ( a - 3 )
Bài 2:
a) \(A=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)
b) \(B=a\left(b^2-c^2\right)+b^2\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)
\(=\left(b-a\right)\left(c-a\right)\left(c-b\right)\)
c) \(C=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
p/s: từ sau bn đăng 1-2 bài thôi nhé, nhiều thế này người lm bài cx hơi bất tiện để đọc đề
còn mấy câu nữa bn đăng lại nhé
a) Ta có: \(x^2-x-6\)
\(=x^2-x-9+3\)
\(=\left(x^2-9\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x+3\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x+2\right)\)
b) Sử dụng phương pháp Hệ số bất định
3, (a+b)(a2-b2)+(b+c)(b2-c2)+(c+a)(c2-a2)
=(a+b)(a2-b2)+(b+c)[-(a2-b2)-(c2-a2)]+(c+a)(c2-a2)
=(a+b)(a2-b2)-(b+c)(a2-b2)-(b+c)(c2-a2)+(c+a)(c2-a2)
=(a2-b2)(a-c)-(a2-c2)(a-b)
=(a-b)(a+b)(a-c)-(a-c)(a+c)(a-b)
=(a-b)(a-c)(a+b-a-c)
=(a-b)(a-c)(b-c)
Bạn nhớ tích cho mình nhe :v
a) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2\left[\left(c-b\right)-\left(a-b\right)\right]+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(b-c\right)\left(a^2-b^2\right)-\left(a-b\right)\left(b^2-c^2\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b-b-c\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a-c\right)\)
c) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\left(1\right)\)
Đặt \(x^2+8x+11=y\)Thay vào (1) ta được
\(\left(y-4\right)\left(y+4\right)+15\)
\(=y^2-16+15\)
\(=y^2-1\)
\(=\left(y-1\right)\left(y+1\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+11\right)\)