Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Xét tứ giác OAMD có
\(\widehat{OAM}+\widehat{ODM}=90^0+90^0=180^0\)
=>OAMD là tứ giác nội tiếp
b: Xét (O) có
ΔADC nội tiếp
AC là đường kính
Do đó: ΔADC vuông tại D
=>AD\(\perp\)BC tại D
Xét ΔABC vuông tại A có AD là đường cao
nên \(AD^2=DB\cdot DC\)
Xét (O) có
MA,MD là tiếp tuyến
Do đó: MA=MD
=>\(\widehat{MAD}=\widehat{MDA}\)
mà \(\widehat{MAD}+\widehat{MBD}=90^0\)(ΔADB vuông tại D)
và \(\widehat{MDA}+\widehat{MDB}=\widehat{BDA}=90^0\)
nên \(\widehat{MDB}=\widehat{MBD}\)
=>MD=MB
mà MD=MA
nên MB=MA
=>M là trung điểm của AB
Xét ΔABC có
M,O lần lượt là trung điểm của AB,AC
=>MO là đường trung bình
=>MO//BC
a + \(2\sqrt{a-\:1}\)= (a - 1) + \(2\sqrt{a-\:1}\)+ 1 = (\(1\:\:+\sqrt{a-1}\))2
Tương tự cho cái còn lại sẽ ra
a: Kẻ OH vuông góc BC
=>OH là khoảng cách từ O đến BC
ΔOBC cân tại O
mà OH là đường cao
nên H là trung điểm của BC
=>\(HB=HC=\dfrac{BC}{2}=\dfrac{R\sqrt{3}}{2}\)
ΔOHB vuông tại H
=>\(OH^2+HB^2=OB^2\)
=>\(OH^2=OB^2-HB^2=R^2-\left(\dfrac{R\sqrt{3}}{2}\right)^2=\dfrac{R^2}{4}\)
=>OH=R/2
=>d(O;BC)=R/2
b: Xét ΔOBC có \(cosBOC=\dfrac{OB^2+OC^2-BC^2}{2\cdot OB\cdot OC}\)
=>\(cosBOC=\dfrac{R^2+R^2-3R^2}{2\cdot R\cdot R}=\dfrac{-1}{2}\)
=>\(\widehat{BOC}=120^0\)
ΔOBC cân tại O
=>\(\widehat{OBC}=\widehat{OCB}=\dfrac{180^0-120^0}{2}=30^0\)
bài 1
P=\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right)\)
=\(\left(\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{...}-\frac{\left(x+\sqrt{x}+1\right)}{...}\right):\frac{\sqrt{x}-1}{2}\)
=\(\left(\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-1}{2}\)
=\(\left(\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-1}{2}\)
=\(\left(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-1}{2}\)
=\(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}.\frac{2}{\sqrt{x}-1}\)
=\(\frac{2}{x+\sqrt{x}+1}\)
P>0 dựa vào dkxd
Bài 1:
a) P= \(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\) (x ≥ 0; x ≠ 4)
=\(\left(\frac{x+2}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)\cdot\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{2}{\sqrt{x}-1}\)
= \(\left(\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{2}{\sqrt{x}-1}\)
=\(\left(\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{2}{\sqrt{x}-1}\)
=\(\frac{\left(\sqrt{x}-1\right)^2\cdot2}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)\cdot\left(\sqrt{x}-1\right)}\)
=\(\frac{2}{x+\sqrt{x}+1}\)
b) Ta có: x ≥ 0 ⇒ \(\sqrt{x}\) ≥ 0
⇒ \(x+\sqrt{x}+1\) ≥ 1 > 0
mà 2 > 0 ⇒ \(\frac{2}{x+\sqrt{x}+1}\) > 0 ⇒ P > 0
Bài 2:
a) P= \(\left(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\) (x ≥ 0; x ≠ 1)
=\(\left(\frac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x+\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
=\(\left(\frac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x+\sqrt{x}+1-\sqrt{x}-2}{x+\sqrt{x}+1}\right)\)
=\(\left(\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x-1}{x+\sqrt{x}+1}\right)\)
=\(\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\cdot\frac{x+\sqrt{x}+1}{x-1}\)
=\(\frac{1}{x-1}\)
b) Ta có: \(\sqrt{P}=\sqrt{\frac{1}{x-1}}\)
= \(\frac{1}{\sqrt{x-1}}\)
x = \(5+2\sqrt{3}\) (TM)
Thay x vào \(\sqrt{P}\) ta có:
\(\sqrt{P}=\frac{1}{\sqrt{5+2\sqrt{3}-1}}\)
=\(\frac{1}{\sqrt{4+2\sqrt{3}}}\)
=\(\frac{1}{\sqrt{3+2\sqrt{x}+1}}\)
=\(\frac{1}{\sqrt{\left(\sqrt{3}+1\right)^2}}\)
=\(\frac{1}{\left|\sqrt{3}+1\right|}\)
=\(\frac{1}{\sqrt{3}+1}\)
= \(\frac{\sqrt{3}-1}{\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-1\right)}\)
=\(\frac{\sqrt{3}-1}{2}\)
Vậy \(\sqrt{P}=\frac{\sqrt{3}-1}{2}\) khi x = \(5+2\sqrt{3}\)
Ta có \(P=\left(\frac{\sqrt{14}-\sqrt{7}}{\sqrt{8}-2}-\frac{\sqrt{15}-\sqrt{3}}{2-2\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{3}}\)
\(=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{2\left(1-\sqrt{5}\right)}\right).\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\left(\frac{\sqrt{7}}{2}+\frac{\sqrt{3}}{2}\right).\left(\sqrt{7}-\sqrt{3}\right)=\frac{\sqrt{7}+\sqrt{3}}{2}.\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\frac{7-3}{2}=2\)
Vậy \(P=2\)