Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 11 + 112 + 113 + ... + 117 + 118
= (11 + 112) + (113 + 114) + ... + (117 + 118)
= 11(1 + 11) + 113(1 + 11) + ... + 117(1 + 11)
= 11.12 + 113.12 + .... + 117.12
= 12(11 + 113 + ... + 117) chia hết cho 12
b, 7 + 72 + 73 + 74
= (7 + 73) + (72 + 74)
= 7(1 + 72) + 72(1 + 72)
= 7.50 + 72.50
= 50(7 + 72) chia hết cho 50
c, 3 + 32 + 33 + 34 + 35 + 36
= (3 + 32 + 33) + (34 + 35 + 36)
= 3(1 + 3 + 32) + 34(1 + 3 + 32)
= 3.13 + 34.13
= 13(3 + 34) chia hết cho 13
A = 3 + 32 + 33 + 34 + ... + 32015 + 32016
A = (3 + 32) + (33 + 34) + ... + (32015 + 32016)
A = 3(1 + 3) + 33(1 + 3) + ... + 32015(1 + 3)
A = 3.4 + 33.4 + ... + 32015.4
A = 4(3 + 33 + ... + 32015)
Vì 4(3 + 33 + ... + 32015) \(⋮\) 4 nên A \(⋮\) 4
Vậy A \(⋮\) 4
A = 3 + 32 + 33 + 34 + ... + 32015 + 32016
A = (3 + 32 + 33) + (34 + 35 + 36) + ... + (32014 + 32015 + 32016)
A = 3(1 + 3 + 32) + 34(1 + 3 + 32) + ... + 32014(1 + 3 + 32)
A = 3.13 + 34.13 + ... + 32014.13
A = 13(3 + 34 + ... + 32014)
Vì 13(3 + 34 + ... + 32014) \(⋮\) 13 nên A \(⋮\) 13
Vậy A \(⋮\) 13
+ Chia hết cho 4:
A= 3+ 32+ 33+ 34+ ..... + 359+ 360
= (3+ 32)+ (33+ 34)+ ..... + (359+ 360)
= 3 (1+ 3)+ 33 (1+ 3)+ ..... + 359 (1+ 3)
= (3+ 33+ ..... + 359) .4 chia hết cho 4
Vậy A chia hết cho 4.
+ Chia hết cho 13:
A= 3+ 32+ 33+ 34+ ..... + 359+ 360
= (3+ 32+ 33)+ (34+ 35+ 36)+ ..... + (358+ 359+ 360)
= 3 (1+ 3+ 32)+ 34 (1+ 3+ 32)+ ..... + 358 (1+ 3+ 32)
= (3+ 34+ ..... + 358) .13 chia hết cho 13
Vậy A chia hết cho 13.
Tick đúng nhé!
a, 6100 - 1 = (6 . 6 . 6 ..... 6) - 1 = [(...6) . (...6) . (...6) ..... (...6)] - 1 = (...6) - 1 = ...5 \(⋮\) 5
b, 2120 - 1110 = (21 . 21 . 21 . 21 . 21..... 21) - (11 . 11 . 11 . 11 ..... 11) = [(...1) . (...1) . (...1) . (...1).....(...1)] - [(...1) . (...1) . (...1) . (...1).....(...1)] = (...1) - (...1) = ....0 \(⋮\) 2; \(⋮\) 5
Bài 1 : Bài giải
\(B=3^1+3^2+...+3^{2020}\)
\(B=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2019}+3^{2020}\right)\)
\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2019}\left(1+3\right)\text{ }⋮\text{ }3\)
\(B=3^1+3^2+...+3^{2020}\)
\(B=\left(3^1+3^2+3^3+3^4\right)+...+\left(3^{2018}+3^{2019}+3^{2020}\right)\)
\(B=3\left(1+3+3^2\right)+...+3^{2018}\left(1+3+3^2\right)\)
\(B=3\cdot13+...+3^{2018}\cdot13\text{ }⋮\text{ }-13\)
Bài 2 : Bài giải
\(xy+3x-2y=11\)
\(x\left(y+3\right)-2\left(y+3\right)+6=11\)
\(\left(y+3\right)\left(x-2\right)=5\)
\(\Rightarrow\text{ }y+3\text{ ; }x-2\text{ }\inƯ\left(5\right)\)
Ta có bảng :
x - 2 | - 5 | - 1 | 1 | 5 |
y + 3 | - 1 | - 5 | 5 | 1 |
x | - 3 | 1 | 3 | 7 |
y | - 4 | - 8 | 2 | - 2 |
Vậy \(\left(x\text{ ; }y\right)=\left(-3\text{ ; }-4\right)\text{ ; }\left(1\text{ ; }-8\right)\text{ ; }\left(3\text{ ; }2\right)\text{ ; }\left(7\text{ ; }-2\right)\)
\(B=3+3^2+3^3+3^4+...+3^{2020}\)
\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{2018}+3^{2019}+3^{2020}\right)\)
\(\Leftrightarrow B=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2018}\left(1+3+3^2\right)\)
\(\Leftrightarrow B=3\cdot13+3^4\cdot13+....+3^{2018}\cdot13\)
\(\Leftrightarrow B=13\left(3+3^4+...+3^{2018}\right)\)
\(\Leftrightarrow B⋮13\left(đpcm\right)\)
Bạn @Fudo sai mất chỗ B chia hết cho 4 bạn viết nhầm thành chia hết cho 3
A = 3 + 3² + 3³ + ... + 3²⁰¹⁰
= (3 + 3²) + (3³ + 3⁴) + ... + (3²⁰⁰⁹ + 3²⁰¹⁰)
= 3.(1 + 3) + 3³.(1 + 3) + ... + 3²⁰⁰⁹.(1 + 3)
= 3.4 + 3³.4 + ... + 3²⁰⁰⁹.4
= 4.(3 + 3³ + ... + 3²⁰⁰⁹) ⋮ 4
Vậy A ⋮ 4 (1)
A = (3¹ + 3² + 3³) + (3⁴ + 3⁵ + 3⁶) + ... + (3²⁰⁰⁸ + 3²⁰⁰⁹ + 3²⁰¹⁰)
= 3.(1 + 3 + 3²) + 3⁴.(1 + 3 + 3²) + ... + 3²⁰⁰⁸.(1 + 3 + 3²)
= 3.13 + 3⁴.13 + ... + 3²⁰⁰⁸.13
= 13.(3 + 3⁴ + ... + 3²⁰⁰⁸) ⋮ 13
Vậy A ⋮ 13 (2)
Từ (1) và (2) ⇒ A ⋮ 4 và A ⋮ 13