K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2023

A = 3 + 3² + 3³ + ... + 3²⁰¹⁰

= (3 + 3²) + (3³ + 3⁴) + ... + (3²⁰⁰⁹ + 3²⁰¹⁰)

= 3.(1 + 3) + 3³.(1 + 3) + ... + 3²⁰⁰⁹.(1 + 3)

= 3.4 + 3³.4 + ... + 3²⁰⁰⁹.4

= 4.(3 + 3³ + ... + 3²⁰⁰⁹) ⋮ 4

Vậy A ⋮ 4  (1)

A = (3¹ + 3² + 3³) + (3⁴ + 3⁵ + 3⁶) + ... + (3²⁰⁰⁸ + 3²⁰⁰⁹ + 3²⁰¹⁰)

= 3.(1 + 3 + 3²) + 3⁴.(1 + 3 + 3²) + ... + 3²⁰⁰⁸.(1 + 3 + 3²)

= 3.13 + 3⁴.13 + ... + 3²⁰⁰⁸.13

= 13.(3 + 3⁴ + ... + 3²⁰⁰⁸) ⋮ 13

Vậy A ⋮ 13  (2)

Từ (1) và (2) ⇒ A ⋮ 4 và A ⋮ 13

20 tháng 11 2018

a, 11 + 112 + 113 + ... + 11+ 118

= (11 + 112) + (113 + 114) + ... + (117 + 118)

= 11(1 + 11) + 113(1 + 11) + ... + 117(1 + 11)

= 11.12 + 113.12 + .... + 117.12

= 12(11 + 113 + ... + 117) chia hết cho 12

b, 7 + 7+ 73 + 74

= (7 + 73) + (72 + 74)

= 7(1 + 72) + 72(1 + 72)

= 7.50 + 72.50

= 50(7  + 72) chia hết cho 50

c, 3 + 32 + 33 + 34 + 35 + 36

= (3 + 32 + 33) + (34 + 35 + 36)

= 3(1 + 3 + 32) + 34(1 + 3 + 32)

= 3.13 + 34.13

= 13(3 + 34) chia hết cho 13

21 tháng 12 2016

A = 3 + 32 + 33 + 34 + ... + 32015 + 32016

A = (3 + 32) + (33 + 34) + ... + (32015 + 32016)

A = 3(1 + 3) + 33(1 + 3) + ... + 32015(1 + 3)

A = 3.4 + 33.4 + ... + 32015.4

A = 4(3 + 33 + ... + 32015)

Vì 4(3 + 33 + ... + 32015) \(⋮\) 4 nên A \(⋮\) 4

Vậy A \(⋮\) 4

A = 3 + 32 + 33 + 34 + ... + 32015 + 32016

A = (3 + 32 + 33) + (34 + 35 + 36) + ... + (32014 + 32015 + 32016)

A = 3(1 + 3 + 32) + 34(1 + 3 + 32) + ... + 32014(1 + 3 + 32)

A = 3.13 + 34.13 + ... + 32014.13

A = 13(3 + 34 + ... + 32014)

Vì 13(3 + 34 + ... + 32014) \(⋮\) 13 nên A \(⋮\) 13

Vậy A \(⋮\) 13

21 tháng 12 2016

thanks

 

29 tháng 10 2015

+ Chia hết cho 4:

A= 3+ 32+ 33+ 34+ ..... + 359+ 360

  = (3+ 32)+ (33+ 34)+ ..... + (359+ 360)

  = 3 (1+ 3)+ 33 (1+ 3)+ ..... + 359 (1+ 3)

  = (3+ 33+ ..... + 359) .4 chia hết cho 4

Vậy A chia hết cho 4.

+ Chia hết cho 13:

A= 3+ 32+ 33+ 34+ ..... + 359+ 360

  = (3+ 32+ 33)+ (34+ 35+ 36)+ ..... + (358+ 359+ 360)

  = 3 (1+ 3+ 32)+ 34 (1+ 3+ 32)+ ..... + 358 (1+ 3+ 32)

  = (3+ 34+ ..... + 358) .13 chia hết cho 13

Vậy A chia hết cho 13.

Tick đúng nhé!

24 tháng 11 2018

1 Ta gọi số cần tìm là: a

Ta có: a=2a+1=3b+2=4f+3=5d+4=6c+5 (a,b,f,d,c E N)

=> a+1 chia hết cho 2;3;4;5;6

=> a+1 E BC(2;3;4;5;6)={0;60;120;180;....;960;1020;......}

VÌ a có 3 cs và a lớn nhất nên

a+1=960=>a=959

2, Bạn cộng a+n 

sao cho a+n chia hết cho 8;12;15;23

25 tháng 10 2021

a, 6100 - 1 = (6 . 6 . 6 ..... 6) - 1 = [(...6) . (...6) . (...6) ..... (...6)] - 1 = (...6) - 1 = ...5 \(⋮\) 5

25 tháng 10 2021

b, 2120 - 1110 = (21 . 21 . 21 . 21 . 21..... 21) - (11 . 11 . 11 . 11 ..... 11) = [(...1) . (...1) . (...1) . (...1).....(...1)] - [(...1) . (...1) . (...1) . (...1).....(...1)] = (...1) - (...1) = ....0 \(⋮\) 2; \(⋮\) 5

28 tháng 2 2020

Bài 1 :                                             Bài giải

\(B=3^1+3^2+...+3^{2020}\)

\(B=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2019}+3^{2020}\right)\)

\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2019}\left(1+3\right)\text{ }⋮\text{ }3\)

\(B=3^1+3^2+...+3^{2020}\)

\(B=\left(3^1+3^2+3^3+3^4\right)+...+\left(3^{2018}+3^{2019}+3^{2020}\right)\)

\(B=3\left(1+3+3^2\right)+...+3^{2018}\left(1+3+3^2\right)\)

\(B=3\cdot13+...+3^{2018}\cdot13\text{ }⋮\text{ }-13\)

Bài 2 :                                       Bài giải

\(xy+3x-2y=11\)

\(x\left(y+3\right)-2\left(y+3\right)+6=11\)

\(\left(y+3\right)\left(x-2\right)=5\)

\(\Rightarrow\text{ }y+3\text{ ; }x-2\text{ }\inƯ\left(5\right)\)

Ta có bảng :

x - 2 - 5 - 1  1  5
y + 3 - 1 - 5  5  1
x - 3   1  3  7
y - 4 - 8  2  - 2

Vậy \(\left(x\text{ ; }y\right)=\left(-3\text{ ; }-4\right)\text{ ; }\left(1\text{ ; }-8\right)\text{ ; }\left(3\text{ ; }2\right)\text{ ; }\left(7\text{ ; }-2\right)\)

28 tháng 2 2020

\(B=3+3^2+3^3+3^4+...+3^{2020}\)

\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{2018}+3^{2019}+3^{2020}\right)\)

\(\Leftrightarrow B=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2018}\left(1+3+3^2\right)\)

\(\Leftrightarrow B=3\cdot13+3^4\cdot13+....+3^{2018}\cdot13\)

\(\Leftrightarrow B=13\left(3+3^4+...+3^{2018}\right)\)

\(\Leftrightarrow B⋮13\left(đpcm\right)\)

Bạn @Fudo sai mất chỗ B chia hết cho 4 bạn viết nhầm thành chia hết cho 3

21 tháng 11 2021

Ba=2b=0

21 tháng 11 2021

BẠN CÓ THỂ GIẢI Ý A GIÚP MÌNH KO