\(\sqrt{2x^2-3x-1}\). đẳng thức nào sau...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Rút gọn biểu thức \(I=ln\left(x\right)^2+ln\left(x\right)\) ta được: a) \(I=2ln\left(x\right)\) b) \(I=ln\left(xe\right)^{ln\left(x\right)}\) c) \(I=ln\left(x^{lnx}e\right)\) d) \(I=ln\left(x^{ln\left(x\right)}.x\right)\) Câu 2: Hàm số nào sau đây không có cự trị: a) \(y=\frac{2+x^2}{x^2-4}\) b) \(y=x^8+x^6+2x^4-4x^2-x+1\) c) \(y=sin\left(cos\left(x\right)\right)\) d) \(y=x^3+2x^2+\sqrt{x}\) Câu 3: Cho đồ thị \(\left(C\right):\)...
Đọc tiếp

Câu 1: Rút gọn biểu thức \(I=ln\left(x\right)^2+ln\left(x\right)\) ta được:

a) \(I=2ln\left(x\right)\)

b) \(I=ln\left(xe\right)^{ln\left(x\right)}\)

c) \(I=ln\left(x^{lnx}e\right)\)

d) \(I=ln\left(x^{ln\left(x\right)}.x\right)\)

Câu 2: Hàm số nào sau đây không có cự trị:

a) \(y=\frac{2+x^2}{x^2-4}\)

b) \(y=x^8+x^6+2x^4-4x^2-x+1\)

c) \(y=sin\left(cos\left(x\right)\right)\)

d) \(y=x^3+2x^2+\sqrt{x}\)

Câu 3: Cho đồ thị \(\left(C\right):\) \(y=\frac{m-x}{x+1}\) và đường thẳng \(\left(d\right):\) \(y=2x+m\) . Hỏi m thuộc khoảng nào để thoả mản đường thẳng \(\left(d\right)\) cắt đồ thị \(\left(C\right)\) tại hai điểm A,B sao cho \(OA=OB\) với \(O\) là gốc toạ độ.
a) \(\left(—\infty;-2\right)\)

b)\(\left[-2;4\right]\)

c) \(\left(4;+\infty\right)\)

d) Không tồn tại giá trị m

Câu 4: Giả sử 2 cặp nghiệm của hệ phương trình \(\left\{{}\begin{matrix}2ln^2\left(x\right)+3ln^2\left(y\right)=5\\ln\left(x\right)+2ln\left(y^2\right)=3\end{matrix}\right.\) đều có dạng \(\left(e\sqrt[a]{e^{18}};\sqrt[b]{e^{13}}\right)=\left(x_1;y_1\right)\)\(\left(e^c;e^d\right)=\left(x_2;y_2\right)\). Mệnh đề nào sau đây là sai:

a) \(a-b+c+d=0\)

b) \(c=\frac{1}{d}\)

c) \(\left(a-b\right)\left(c+d\right)=0\)

d) \(a+b=35c^2+35d\)

Câu 5: Cho \(m\) là các số nguyên thuộc \(\left[0;10\right]\). Các tấc cả bao nhiêu giá trị \(m\) để phương trình \(2^{mx}-mx^2=0\) có 3 nghiệm phân biệt.
a) 0

b) 1

c) 2

d) Đáp án khác

2
NV
5 tháng 2 2020

Câu 1: Là \(ln^2x+lnx\) hay \(lnx^2+lnx\) bạn, hai cái này khác nhau lắm, viết thế kia chẳng hiểu gì cả. Biểu thức logarit nếu viết mũ, thì hoặc là viết thế này \(ln^2x\) hoặc là \(\left(lnx\right)^2\), nếu viết \(ln\left(x\right)^2\) người ta sẽ mặc định hiểu là \(ln\left(x^2\right)\)

Chắc là cái đầu, vậy ta biến đổi được:

\(lnx\left(lnx+1\right)=lnx\left(lnx+lne\right)=lnx.ln\left(x.e\right)=ln\left(x.e\right)^{lnx}\)

Câu 2: đạo hàm 4 cái ra, dễ dàng nhận ra ở đáp án d, với \(x\ge0\Rightarrow f'\left(x\right)=3x^2+4x+\frac{1}{2\sqrt{x}}>0\) luôn đồng biến nên hàm không có cực trị

Câu 3:

Phương trình hoành độ giao điểm:

\(\frac{m-x}{x+1}=2x+m\Leftrightarrow m-x=2x^2+\left(m+2\right)x+m\)

\(\Leftrightarrow2x^2+\left(m+3\right)x=0\)

Phương trình luôn có nghiệm \(x=0\) hay ít nhất 1 trong 2 điểm A; B sẽ trùng gốc tọa độ tức \(OA=0\) hoặc \(OB=0\)

Do đó ko tồn tại m thỏa mãn

NV
5 tháng 2 2020

Câu 4:

\(\left\{{}\begin{matrix}lnx=X\\lny=Y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2X^2+3Y^2=5\\X+4Y=3\end{matrix}\right.\)

\(\Rightarrow2\left(3-4Y\right)^2+3Y^2=5\)

\(\Leftrightarrow35Y^2-48Y+13=0\Rightarrow\left[{}\begin{matrix}Y=1\Rightarrow X=-1\\Y=\frac{13}{35}\Rightarrow X=\frac{53}{35}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}lnx=-1\\lny=1\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(e^{-1};e\right)\) \(\Rightarrow\left\{{}\begin{matrix}c=-1\\d=1\end{matrix}\right.\)

Hoặc \(\left\{{}\begin{matrix}lnx=\frac{53}{35}\\lny=\frac{13}{35}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=e^{\frac{53}{35}}=e\sqrt[35]{e^{18}}\\y=e^{\frac{13}{35}}=\sqrt[35]{e^{13}}\end{matrix}\right.\) \(\Rightarrow a=b=35\)

Đáp án b sai

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

18. Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left(3;-4;0\right)\) , \(B\left(0;2;4\right)\) , \(C\left(4;2;1\right)\) . Tìm tọa độ điểm D thuộc trục Ox sao cho AD = BC A. \(\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(6;0;0\right)\end{matrix}\right.\) B. \(D\left(0;-6;0\right)\) C. \(\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(-6;0;0\right)\end{matrix}\right.\) D. \(D\left(6;0;0\right)\) 11. Trong không gian với hệ tọa Oxyz, mặt cầu...
Đọc tiếp

18. Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left(3;-4;0\right)\) , \(B\left(0;2;4\right)\) , \(C\left(4;2;1\right)\) . Tìm tọa độ điểm D thuộc trục Ox sao cho AD = BC

A. \(\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(6;0;0\right)\end{matrix}\right.\)

B. \(D\left(0;-6;0\right)\)

C. \(\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(-6;0;0\right)\end{matrix}\right.\)

D. \(D\left(6;0;0\right)\)

11. Trong không gian với hệ tọa Oxyz, mặt cầu \(\left(S\right):\) \(x^2+y^2+z^2-2x+4y-4=0\) cắt mp \(\left(P\right):\) \(x+y-z+4=0\) theo giao tuyến đường tròn \(\left(C\right)\) . Tính diện tích S của đường tròn \(\left(C\right)\)

A. \(S=\frac{2\pi\sqrt{78}}{3}\)

B. \(S=2\pi\sqrt{6}\)

C. \(S=6\pi\)

D. \(S=\frac{26\pi}{3}\)

14. Trong không gian Oxyz, mặt cầu tâm \(I\left(1;2;-1\right)\) cắt mp \(\left(P\right):\) \(x-2y-2z-8=0\) theo một đường tròn có bán kính bằng 4 có pt là

A. \(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=5\)

B. \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=9\)

C. \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=25\)

15. Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left(2;-1;3\right)\) , \(B\left(4;0;1\right)\) , \(C\left(-10;5;3\right)\) Vecto nào dưới đây là VTPT của mp \(\left(ABC\right)\)

A. \(\overrightarrow{n_1}\left(1;2;0\right)\)

B. \(\overrightarrow{n_2}\left(1;2;2\right)\)

C. \(\overrightarrow{n_3}\left(1;8;2\right)\)

D. \(\overrightarrow{n_4}\left(1;-2;2\right)\)

D. \(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=3\)

2
NV
22 tháng 6 2020

14.

\(d\left(I;\left(P\right)\right)=\frac{\left|1-2.2+2-8\right|}{\sqrt{1^2+\left(-2\right)^2+\left(-2\right)^2}}=3\)

Áp dụng định lý Pitago:

\(R=\sqrt{4^2+d^2\left(I;\left(P\right)\right)}=\sqrt{4^2+3^2}=5\)

Phương trình mặt cầu:

\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=25\)

15.

\(\overrightarrow{AB}=\left(2;1;-2\right)\) ; \(\overrightarrow{AC}=\left(-12;6;0\right)\)

\(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(12;24;24\right)=12\left(1;2;2\right)\)

\(\Rightarrow\) Mặt phẳng (ABC) nhận \(\left(1;2;2\right)\) là 1 vtpt

NV
22 tháng 6 2020

18.

\(D\in Ox\Rightarrow D\left(a;0;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AD}=\left(a-3;4;0\right)\\\overrightarrow{BC}=\left(4;0;-3\right)\end{matrix}\right.\)

\(AD=BC\Leftrightarrow\left(a-3\right)^2+4^2=4^2+\left(-3\right)^2\)

\(\Leftrightarrow\left(a-3\right)^2=9\Rightarrow\left[{}\begin{matrix}a=0\\a=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(6;0;0\right)\end{matrix}\right.\)

11.

Mặt cầu (S) tâm \(I\left(1;-2;0\right)\) bán kính \(R=\sqrt{1^2+\left(-2\right)^2-\left(-4\right)}=3\)

\(d\left(I;\left(P\right)\right)=\frac{\left|1-2-0+4\right|}{\sqrt{1^2+1^2+\left(-1\right)^2}}=\sqrt{3}\)

Gọi bán kính đường tròn (C) là \(r\)

Áp dụng định lý Pitago:

\(r=\sqrt{R^2-d^2\left(I;\left(P\right)\right)}=\sqrt{6}\)

Diện tích đường tròn: \(S=\pi r^2=6\pi\)

27 tháng 4 2017

Hỏi đáp Toán

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

17. Gọi \(z_1\), \(z_2\) là các nghiệm của pt \(z^2+4z+5=0\) . Đặt \(w=\left(1+z_1\right)^{100}+\left(1+z_2\right)^{100}\) . Khi đó A. \(w=2^{50}i\) B. \(w=-2^{51}\) C. \(w=2^{51}\) D. \(w=-2^{50}i\) 14. Trong mp tọa độ Oxy, gọi M là điểm biểu diễn số phức \(z=3-4i\) ; M' là điểm biểu diễn cho số phức \(z'=\frac{1+i}{2}z\) . Tính diện tích \(\Delta OMM'\) A. \(\frac{25}{4}\) B. \(\frac{25}{2}\) C. \(\frac{15}{4}\) D. \(\frac{15}{2}\) 10....
Đọc tiếp

17. Gọi \(z_1\), \(z_2\) là các nghiệm của pt \(z^2+4z+5=0\) . Đặt \(w=\left(1+z_1\right)^{100}+\left(1+z_2\right)^{100}\) . Khi đó

A. \(w=2^{50}i\)

B. \(w=-2^{51}\)

C. \(w=2^{51}\)

D. \(w=-2^{50}i\)

14. Trong mp tọa độ Oxy, gọi M là điểm biểu diễn số phức \(z=3-4i\) ; M' là điểm biểu diễn cho số phức \(z'=\frac{1+i}{2}z\) . Tính diện tích \(\Delta OMM'\)

A. \(\frac{25}{4}\)

B. \(\frac{25}{2}\)

C. \(\frac{15}{4}\)

D. \(\frac{15}{2}\)

10. TÌm 2 số thực \(x\)\(y\) thỏa mãn \(\left(2x-3yi\right)+\left(1-3i\right)=x+6i\) với \(i\) là đơn vị ảo.

A. \(x=-1;\) \(y=-3\)

B. \(x=-1;\) \(y=-1\)

C. \(x=1;\) \(y=-1\)

D.\(x=1;\) \(y=-3\)

6. Hình tròn tâm \(I\left(-1;2\right)\) bán kính \(r=5\) là tập hợp điểm biểu diễn hình học của các số phức \(z\) thỏa mãn

A. \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\ge5\end{matrix}\right.\)

B. \(\left\{{}\begin{matrix}z=\left(x+1\right)+\left(y-2\right)i\\\left|z\right|=5\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}z=\left(x-1\right)+\left(y+2\right)i\\\left|z\right|\le\sqrt{5}\end{matrix}\right.\)

D. \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\le5\end{matrix}\right.\)

3. Xét số phức thỏa mãn \(\left|z-2-4i\right|=\left|z-2i\right|\) . Tìm GTNN của \(\left|z\right|\)

A. 4

B. \(2\sqrt{2}\)

C. 10

D. 8

2
NV
22 tháng 6 2020

10.

\(\left(2x-3yi\right)+\left(1-3i\right)=x+6i\)

\(\Leftrightarrow\left(2x+1\right)+\left(-3y-3\right)i=x+6i\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=x\\-3y-3=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

6.

\(\left(x+1\right)^2+\left(y-2\right)^2\le25\)

\(\Rightarrow\left|\left(x+1\right)-\left(y-2\right)i\right|\le5\)

\(\Rightarrow z\) là số phức: \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\le5\end{matrix}\right.\)

Lưu ý: hình tròn khác đường tròn. Phương trình đường tròn là \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)

Pt hình tròn là: \(\left(x-a\right)^2+\left(y-b\right)^2\le R^2\)

3.

\(z=x+yi\Rightarrow\left|x-2+\left(y-4\right)i\right|=\left|x+\left(y-2\right)i\right|\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y-4\right)^2=x^2+\left(y-2\right)^2\)

\(\Leftrightarrow-4x-8y+20=-4y+4\)

\(\Leftrightarrow x=-y+4\)

\(\left|z\right|=\sqrt{x^2+y^2}=\sqrt{\left(-y+4\right)^2+y^2}=\sqrt{2y^2-8y+16}\)

\(\left|z\right|=\sqrt{2\left(x-2\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\)

NV
22 tháng 6 2020

17.

\(z^2+4z+4=-1\Leftrightarrow\left(z+2\right)^2=i^2\Rightarrow\left\{{}\begin{matrix}z_1=-2+i\\z_2=-2-i\end{matrix}\right.\)

\(\Rightarrow w=\left(-1+i\right)^{100}+\left(-1-i\right)^{100}=\left(1-i\right)^{100}+\left(1+i\right)^{100}\)

Ta có: \(\left(1-i\right)^2=1+i^2-2i=-2i\)

\(\Rightarrow\left(1-i\right)^{100}=\left(1-i\right)^2.\left(1-i\right)^2...\left(1-i\right)^2\) (50 nhân tử)

\(=\left(-2i\right).\left(-2i\right)...\left(-2i\right)=\left(-2\right)^{50}.i^{50}=2^{50}.\left(i^2\right)^{25}=-2^{50}\)

Tượng tự: \(\left(1+i\right)^2=1+i^2+2i=2i\)

\(\Rightarrow\left(1+i\right)^{100}=2i.2i...2i=2^{50}.i^{50}=-2^{50}\)

\(\Rightarrow w=-2^{50}-2^{50}=-2^{51}\)

18.

\(z'=\left(\frac{1+i}{2}\right)\left(3-4i\right)=\frac{7}{2}-\frac{1}{2}i\)

\(\Rightarrow M\left(3;-4\right)\) ; \(M'\left(\frac{7}{2};-\frac{1}{2}\right)\)

\(S_{OMM'}=\frac{1}{2}\left|\left(x_M-x_O\right)\left(y_{M'}-y_O\right)-\left(x_{M'}-x_O\right)\left(y_M-y_O\right)\right|\)

\(=\frac{1}{2}\left|3.\left(-\frac{1}{2}\right)-\frac{7}{2}.\left(-4\right)\right|=\frac{25}{4}\)

Câu 1: Cho hàm số \(y=f\left(x\right)\), biết \(f’\left(x\right)=k\left(\frac{\sqrt{m}-m}{m^2}\right)\left(x-k\right)\) ( m,k là các hằng số ). Tìm tấc cả các giá trị nguyên của \(m\) thuộc \(\left[0;2020\right]\) để đồ thị hàm số \(y=f\left(x\right)\) có duy nhất một cực đại tại \(x=k\) \(\forall k\in\left[1;10\right]\). a) 1 b) 2019 c) 2020 d) 0 Câu 2: Cho hàm số \(y=f\left(x\right)\) liên tục trên \(R\). Biết...
Đọc tiếp

Câu 1: Cho hàm số \(y=f\left(x\right)\), biết \(f’\left(x\right)=k\left(\frac{\sqrt{m}-m}{m^2}\right)\left(x-k\right)\) ( m,k là các hằng số ). Tìm tấc cả các giá trị nguyên của \(m\) thuộc \(\left[0;2020\right]\) để đồ thị hàm số \(y=f\left(x\right)\) có duy nhất một cực đại tại \(x=k\) \(\forall k\in\left[1;10\right]\).
a) 1

b) 2019

c) 2020

d) 0

Câu 2: Cho hàm số \(y=f\left(x\right)\) liên tục trên \(R\). Biết \(f‘\left(0\right)=1,f\left(1\right)=0\), GTLN hàm số \(f\left(x\right)\) trên đoạn \(\left[0;1\right]\) bằng \(\frac{4}{27}\) tại điểm \(x=\frac{1}{3}\)\(\int\limits^1_0f”\left(x\right)f’\left(x\right)dx=-\frac{1}{2}\). Hỏi phương trình \(f\left(\sqrt[3]{x}\right)=\sqrt[3]{x}\) có bao nhiêu nghiệm

a) 3

b) 2

c) 1

d) 0

Câu 3: Cho hàm số \(y=f\left(x\right)\)\(f’\left(x\right)=x\left(x-2\right)\left(x^2-x\right)^{11}\). Hỏi hàm số \(y=f\left(\frac{2\sqrt{x-2}}{x-2}\right)\) đồng biến trên khoảng

0
Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q)...
Đọc tiếp

Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).

(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q) là:

\(a)\left(x+3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(b)\left(x+3\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=\frac{4}{9}\)

\(c)\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(d)\left(x-3\right)^2+\left(y-1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

Câu 2: Cho mặt cầu (S): \(x^2+y^2+z^2-2x+2y+1=0\)và điểm \(M\left(0;-1;0\right).\)

Phương trình mặt phẳng (P) tiếp xúc với (S) tại M là:

\(a)2x+y-z+1=0.\)                     \(b)x=0.\)            

\(c)-x+y+2z+1=0.\)              \(d)x+y+1=0\)

Câu 3: Trong khai triển \(f\left(x\right)=\frac{1}{256}\left(2x+3\right)^{10}\)thành đa thức, hệ số của x8 là:

\(a)103680.\)            \(b)405.\)             \(c)106380.\)            \(d)504.\)

Câu 4: Tổng các nghiệm của phương trình \(2^{x^2-3}.5^{x^2-3}=0,01.\left(10^{x-1}\right)^3\)là:

\(a)3.\)            \(b)5.\)            \(c)0.\)            \(d)2\sqrt{2}.\)

 

1
21 tháng 6 2019

Lần sau em đăng bài ở học 24 để mọi người giúp đỡ em nhé!

Link đây: Cộng đồng học tập online | Học trực tuyến

1. Gọi I là tâm của mặt cầu cần tìm

Vì I thuộc d

=> I( a; -1; -a)

Mặt cầu tiếp xúc với hai mặt phẳng (p), (Q). nên ta co:

d(I; (P))=d(I;(Q))

<=> \(\frac{\left|a+2\left(-1\right)+2\left(-a\right)+3\right|}{\sqrt{1^2+2^2+2^2}}=\frac{\left|a+2\left(-1\right)+2\left(-a\right)+7\right|}{\sqrt{1^2+2^2+2^2}}\)

\(\Leftrightarrow\frac{\left|-a+1\right|}{3}=\frac{\left|-a+5\right|}{3}\Leftrightarrow a=3\)

=> I(3; -1; -3) ; bán kinh : R=d(I; P)=2/3

=> Phương trình mặt cầu:

\(\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

đáp án C.

2. Gọi I là tâm mặt cầu: I(1; -1; 0)

Ta có: Phương trình mặt phẳng (P) tiếp xúc vs mặt Cầu S tại M

=> IM vuông góc vs mặt phẳng (P)

=> \(\overrightarrow{n_p}=\overrightarrow{MI}=\left(1;0;0\right)\)

=> Phương trình mặt phẳng (P) có véc tơ pháp tuyến: \(\overrightarrow{n_p}\)và qua điểm M

1(x-0)+0(y+1)+0(z-0) =0<=> x=0

đáp án B

3.

 \(f\left(x\right)=\dfrac{1}{256}\left(2x+3\right)^{10}=\dfrac{1}{256} \sum \limits_{k=0} ^{10}C_{k}^{10}(2x)^k.3^{10-k}\)

Để có hệ số x^8 thì k=8 khi đó hệ số của x^8 là:

\(\dfrac{1}{256}C_{8}^{10}.2^8.3^{10-8}=405\)

đáp án D

4.

pt <=>  \(\left(2.5\right)^{x^2-3}=10^{-2}.10^{3x-3}\)

\(\Leftrightarrow10^{x^2-3}=10^{3x-5}\)

\(\Leftrightarrow x^2-3=3x-5\Leftrightarrow x^2-3x+5=0\)

=> theo định lí viet tổng các nghiệm bằng 3, tích các nghiệm bằng 5

Đáp án A