\(x^2 -10x+25-4x(x+5)=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow x^2-10x+25-4x^2-20x=0\)

\(\Leftrightarrow-3x^2-30x+25=0\)

\(\Leftrightarrow3x^2+30x-25=0\)

\(\text{Δ}=30^2-4\cdot3\cdot\left(-25\right)=900+300=1200>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-30-20\sqrt{3}}{6}=\dfrac{-15-10\sqrt{3}}{3}\\x_2=\dfrac{-15+10\sqrt{3}}{3}\end{matrix}\right.\)

23 tháng 2 2022

a) x2 + 10x + 25 - 4x2 - 20x = 0

<=> 3x2 + 10x - 25 = 0

<=> (x + 5)(3x - 5) = 0 <=> 0RB\(\left\{{}\begin{matrix}-5\\\dfrac{5}{3}\\\end{matrix}\right.\)

Vậy S = {−5;\(\dfrac{5}{3}\)}

NV
13 tháng 4 2020

Hai câu là hoàn toàn giống nhau, mình làm câu a, câu b bạn tự làm tương tự:

ĐKXĐ: ...

Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:

\(\frac{4}{4x+\frac{7}{x}-8}+\frac{3}{4x+\frac{7}{x}-10}=1\)

Đặt \(4x+\frac{7}{x}-10=t\)

\(\Leftrightarrow\frac{4}{t+2}+\frac{3}{t}=1\Leftrightarrow4t+3\left(t+2\right)=t\left(t+2\right)\)

\(\Leftrightarrow t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x+\frac{7}{x}-10=-1\\4x+\frac{7}{x}-10=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x^2-9x+7=0\\4x^2-16x+7=0\end{matrix}\right.\) (bấm casio)

13 tháng 4 2020

cảm ơn

15 tháng 1 2019

\(a,x^2-10x-39=0\)

\(\Leftrightarrow x^2-10x-39+64=64\)

\(\Leftrightarrow x^2-10x+25=64\)

\(\Leftrightarrow\left(x-5\right)^2=64\)

làm nốt

15 tháng 1 2019

\(x^2-10x-39=0\Leftrightarrow x^2-13x+3x-39=0\Leftrightarrow x\left(x-13\right)+3\left(x-13\right)=0\)

\(\Leftrightarrow\left(x-13\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=13\\x=-3\end{cases}}\)

25 tháng 1 2017

a, x3 +x2 -12x=0

\(\Leftrightarrow\)x3 +4x2-3x2-12x=0

\(\Leftrightarrow\) x2(x+4)-3x(x+4)=0

\(\Leftrightarrow\) (x2-3x)(x+4)=0

\(\Leftrightarrow\)x(x-3)(x+4)=0

\(\left[\begin{matrix}x=0\\x-3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[\left[\begin{matrix}x=0\\x=3\\x=-4\end{matrix}\right.\)

Vậy S\(=\)\(\left\{0;3;-4\right\}\)

25 tháng 1 2017

b.x3-4x2-x+4=0

\(\Leftrightarrow\)x2(x-4)-(x-4)=0

\(\Leftrightarrow\) (x2 -1)(x-4)=0

\(\Leftrightarrow\)(x-1)(x+1)(x-4)=0

\(\left[\begin{matrix}x+1=0\\x-1=0\\x-4=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=-1\\x=4\end{matrix}\right.\)

Vậy S=\(\left\{1;-1;4\right\}\)

29 tháng 7 2019

\(x^2\left(x-3\right)+12-4x=0\)

\(\Leftrightarrow x^2\left(x-3\right)+4\left(3-x\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=3\end{cases}}}\)

29 tháng 7 2019

\(2\left(x+5\right)-x^2-5x=0\)

\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2-x=0\\x-5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=5\end{cases}}\)

3 tháng 8 2020

\(5X\left(X-2020\right)+X=2020\)

\(\Leftrightarrow5X^2-10100X+X=2020\)

\(\Leftrightarrow5X^2-10099X=2020\)

\(\Leftrightarrow5X^2-10099X-2020=0\)

\(\Leftrightarrow5X^2-10100X+x-2020=0\)

\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)

\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)

3 tháng 8 2020

\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)

\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)

\(\Leftrightarrow-11\left(4x-9\right)=0\)

\(\Leftrightarrow x=\frac{9}{4}\)

16 tháng 2 2018

điều kiện xác định \(x\ne0\)

ta có : \(\dfrac{x+1}{x^2+2x+4}-\dfrac{x-2}{x^2-2x+4}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x^2-2x+4\right)-\left(x-2\right)\left(x^2+2x+4\right)}{\left(x^2+2x+4\right)\left(x^2-2x+4\right)}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)

\(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-\left(x^3+2x^2+4x-2x^2-4x-8\right)}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-x^3-2x^2-4x+2x^2+4x+8}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{-x^2+2x+12}{x^4+4x^2+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)

\(\Leftrightarrow-x^2+2x+12=\dfrac{6}{x}\Leftrightarrow x\left(-x^2+2x+12\right)=6\)

\(\Leftrightarrow-x^3+2x^2+12x=6\Leftrightarrow-x^3+2x^2+12x-6=0\)

tới đây bn bấm máy tính nha

16 tháng 2 2018

câu b lm tương tự nha

21 tháng 3 2020

1)\(6x^2-20x+6=0\)

<=>\(6x^2-18x-2x+6=0\)

<=>6x(x-3)-2(x-3)=0

<=>(6x-2)(x-3)=0

<=>6x-2=0

hoặc x-3=0

<=>x=\(\frac{1}{3}\)

hoặc x=3

Vậy...

2)\(8x^2+10x-3=0\)

=>\(8x^2-2x+12x-3=0\)

<=>2x(4x-1)+3(4x-1)=0

<=>(2x+3)(4x-1)=0

<=>2x+3=0<=>x=\(\frac{3}{2}\)

hoặc 4x-1=0<=>x=\(\frac{1}{4}\)

Vậy ........

3)Phương trình tương đương: \(4x^2-2x+10x-5=0\)

<=> 2x(2x-1)+5(2x-1)=0

<=> (2x+5)(2x-1)=0

Giải ra các trường hợp là xong

4)Phương trình tương đương:\(x^2-10x+25-1=0\)

<=>\(\left(x-5\right)^2-1^2=0\)

<=>(x-5-1)(x-5+1)=0

<=>(x-6)(x-4)=0 Giải các TH nữa là xong

5)\(x^2-5x-24\)=0

<=>\(x^2-8x+3x-24=0\)

<=>x(x-8)+3(x-8)=0

<=>(x+3)(x-8)=0

Giải ra các nghiệm nữa là xong

6)Phương trình tương đương :\(x^4+6x^2+9-9x^2=0\)

<=> \(\left(x^2+3\right)^2-\left(3x\right)^2\)

<=> \(\left(x^2+3x+3\right)\left(x^2-3x+3\right)\)=0

Đến đây tự làm nhé

7)Phương trình tương đương :\(4x^4-12x^2+9-8=0\)

<=>\(\left(2x-3\right)^2-\sqrt{8}^2\)=0

<=>(2x-3-\(\sqrt{8}\))\(\left(2x-3+\sqrt{8}\right)\)=0

Đến đây dễ rồi

19 tháng 7 2017

\(a,\dfrac{x^2-4x+4}{x-2}=1\) (1)

Đkxđ: \(x\ne2\)

\(\left(1\right)\Leftrightarrow\dfrac{\left(x-2\right)^2}{x-2}=1\)

\(\Leftrightarrow x-2=1\Rightarrow x=3\)

\(b,\dfrac{x^2-10x+25}{x^2-25}=0\left(1\right)\)

ĐKXĐ: \(x\ne\pm5\)

\(\left(1\right)\Leftrightarrow\dfrac{\left(x-5\right)^2}{\left(x+5\right)\left(x-5\right)}=0\)

\(\Leftrightarrow\dfrac{x-5}{x+5}=0\)

\(\Rightarrow x-5=0\Rightarrow x=5\)

19 tháng 7 2017

k có j đw bạn