Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)
\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)
Vậy pt có một nghiệm duy nhất là \(x=-1\)
b)
\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)
\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)
Lập bảng xét dấu ra nhé ~^o^~
dài v nhg thui cố làm v
a)\(\sqrt{4x^2}-20x+25+2x=5\)
=> \(2x-18x+20=0\)
=> \(-16x+20=0\)
=> \(-4x+5=0\)
=> \(-4x=-5\)
=> \(x=\dfrac{5}{4}\)
vậy........................................................
d) \(\sqrt{x-2}\cdot\sqrt{x-1}=\sqrt{x-1-1}\)
cau này đề sai
ok baby
Nguyễn Thành Trương , mình đang sài latop, nhìn bài của cậu, tớ muốn quẹo cả cổ -.-
Hoài Dung Copy ảnh. Mở paint past vào chỉnh hướng rồi xem :)
\(a,\sqrt{4x^2-20x+25}+2x=5\)
\(\Rightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)
\(\Rightarrow4x=10\Rightarrow x=\frac{5}{2}\)
\(b,\sqrt{1-12x+36x^2}=5\)
\(\Rightarrow6x-1=5\)
\(\Rightarrow6x=6\Rightarrow x=1\)
\(c,\sqrt{x^2+x}=x\)
\(\Rightarrow x^2+x=x^2\)
\(\Rightarrow x=0\)
\(c,\Rightarrow\left(x-2\right)^2-1=\left(x-2\right)^2\)
\(\Rightarrow-1=0\) (vô lý)
=> PT vô nghiệm
Giải mẫu chi tiết cho bài này nhé
Đk:\(x\ge\frac{5}{2}\)
\(pt\Leftrightarrow\sqrt{\left(2x\right)^2-2\cdot2\cdot5x+5^2}=5-2x\)
\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}=5-2x\)
\(\Leftrightarrow\left|2x-5\right|=5-2x\)
*)Xét \(x\ge\frac{5}{2}\Rightarrow\left|2x-5\right|\ge0\Rightarrow\left|2x-5\right|=2x-5\)
thì \(\Leftrightarrow2x-5=5-2x\Leftrightarrow x=\frac{5}{2}\) (thỏa)
*)Xét \(x< \frac{5}{2}\Rightarrow\left|2x-5\right|< 0\Rightarrow\left|2x-5\right|=-\left(2x-5\right)=-2x+5\)
thì \(\Leftrightarrow-2x+5=5-2x\Leftrightarrow0=0\) vậy luôn đúng
\(\sqrt{4x^2-20x+25}+2x=5\)
\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}=5-2x\)
\(\Leftrightarrow\left|2x-5\right|=5-2x\)(*)
+) Với x < 5/2
(*) <=> -( 2x - 5 ) = 5 - 2x
<=> 5 - 2x = 5 - 2x ( đúng ∀ x < 5/2 ) (1)
+) Với x ≥ 5/2
(*) <=> 2x - 5 = 5 - 2x
<=> 2x + 2x = 5 + 5
<=> 4x = 10
<=> x = 10/4 = 5/2 ( tm ) (2)
Từ (1) và (2) => Nghiệm của phương trình là x ≤ 5/2
biểu thức trong căn biến đổi thành bp dc nên không dk nhe bạn
Căn bậc ba không cần đk nhé
\(\sqrt{4x^2-20x+25}+2x=5\)
<=>\(\sqrt{\left(2x\right)^2-2.2x.5+5^2}+2x=5\)
<=>\(\sqrt{\left(2x-5\right)^2}+2x=5\)
<=>\(\left|2x-5\right|+2x=5\)
Xét \(2x-5\ge0\Leftrightarrow x\ge\dfrac{5}{2}\)
=>2x-5+2x=5
=>4x=10
=> x=5/2(nhận)
Xét \(2x-5\le0< =>x\le\dfrac{5}{2}\)
=>-2x+5+2x=5
=>5=5(hn)
Vậy x=5/2 hoặc x<5/2
a)\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow\left|1-x\right|+\left|x-2\right|=3\)
Có: \(VT=\left|1-x\right|+\left|x-2\right|\)
\(\ge\left|1-x+x-2\right|=3=VP\)
Khi \(x=0;x=3\)
b)\(\sqrt{x^2-10x+25}=3-19x\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3-19x\)
\(\Leftrightarrow\left|x-5\right|=3-19x\)
\(\Leftrightarrow x^2-10x+25=361x^2-114x+9\)
\(\Leftrightarrow-360x^2+104x+16=0\)
\(\Leftrightarrow-5\left(5x-2\right)\left(9x+1\right)=0\)
\(\Rightarrow x=\frac{2}{5};x=-\frac{1}{9}\)
c)\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
\(\Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)
\(\Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)
\(\Leftrightarrow2\sqrt{2x-3}+5=5\)\(\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)
\(\sqrt{4x^2-20x+25}+2x=\sqrt{\left(2x-5\right)^2}+2x=\left|2x-5\right|+2x=5\)
\(+,x< \frac{5}{2}\Rightarrow2x-5< 0\Rightarrow\left|2x-5\right|+2x=5-2x+2x=5\Leftrightarrow5=5\left(ld\right)\)
\(+,x\ge\frac{5}{2}\Rightarrow2x-5\ge0\Rightarrow\left|2x-5\right|=2x-5\Rightarrow\left|2x-5\right|+2x=4x-5=5\Leftrightarrow x=\frac{5}{2}\left(tm\right)\)
\(Vay:x\le\frac{5}{2}\)