Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
\(\Leftrightarrow\frac{3-x}{\sqrt{5-x}}+\frac{3+x}{\sqrt{5+x}}=\frac{4}{3}\)
Đặt \(\hept{\begin{cases}\sqrt{5-x}=a\\\sqrt{5+x}=b\end{cases}}\) thì ta có:
\(\hept{\begin{cases}\frac{a^2-2}{a}+\frac{b^2-2}{b}=\frac{4}{3}\\a^2+b^2=10\end{cases}}\)
Tới đây thì đơn giản rồi nhé
câu này cậu dùng bunhia vt rồi sd cối là đc làm đc n bài nào rồi
Giải pt vô tỉ sau : \(\sqrt{-4x^4y^2+16x^2y+9}\)_\(\sqrt{x^2y^2-2y^2}\)=2(\(x^2\)+\(\frac{1}{x^2}\))
cách giải hay nè: =
=
=
Đặt =
=> =
=> = .ta có hệ:
Đến Đây thì đơn giản rồi.chứ nân ra thì muốn ói
ok tớ sẽ giải nhunh ! sửa câu 2 đi rồi tớ sẽ làm cho bn !
câu 1 ) thì đúng
câu 2 sai đề
\(\sqrt{\frac{-6}{1+x}}=5\)
\(\Leftrightarrow\sqrt{\frac{-6}{1+x}}^2=5^2\)
\(\Leftrightarrow\frac{-6}{1+x}=25\)
\(\Leftrightarrow x+1=\frac{-6}{25}\)
\(\Leftrightarrow x=\frac{-6}{25}-1=\frac{-31}{25}\)
\(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}=2\)
\(\Leftrightarrow\sqrt{x-49}=2\)
\(\Leftrightarrow x-49=4\Leftrightarrow x=53\)
b2
\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)
Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)
Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)
và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)
Do đó \(VT\ge VF\)
Dấu = xảy ra khi\(x=\frac{1}{2}\)
bình phương 2 vế và giải như lớp 8
nhưng cậu giải được phương trình bậc 4 chứ