Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2x+\frac{\pi}{3}=\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{2}\)
Do \(x\in\left[0;2\pi\right]\Rightarrow0\le\frac{\pi}{12}+\frac{k\pi}{2}\le2\pi\)
\(\Rightarrow-\frac{1}{6}\le k\le\frac{23}{6}\Rightarrow k=\left\{0;1;2;3\right\}\)
\(\Rightarrow x=\left\{\frac{\pi}{12};\frac{7\pi}{12};\frac{13\pi}{12};\frac{19\pi}{12}\right\}\)
\(sin\left(x+\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=-\frac{\pi}{3}+k2\pi\\x+\frac{\pi}{6}=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
Do \(x\in\left[0;2\pi\right]\Rightarrow\left[{}\begin{matrix}0\le-\frac{\pi}{2}+k2\pi\le2\pi\\0\le\frac{7\pi}{6}+k2\pi\le2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}k=1\\k=0\end{matrix}\right.\) \(\Rightarrow x=\left\{\frac{3\pi}{2};\frac{7\pi}{6}\right\}\)
\(cos\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\\x+\frac{\pi}{4}=-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=-\pi+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\frac{\pi}{2};\pi\right\}\)
6.
\(\Leftrightarrow\frac{1}{2}cos6x+\frac{1}{2}cos4x=\frac{1}{2}cos6x+\frac{1}{2}cos2x+\frac{3}{2}+\frac{3}{2}cos2x+1\)
\(\Leftrightarrow cos4x=4cos2x+5\)
\(\Leftrightarrow2cos^22x-1=4cos2x+5\)
\(\Leftrightarrow cos^22x-2cos2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=3>1\left(ktm\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
7.
Thay lần lượt 4 đáp án ta thấy chỉ có đáp án C thỏa mãn
8.
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\frac{\pi}{6};\frac{\pi}{2}\right\}\)
9.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}-1\le t\le1\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Rightarrow mt+\frac{t^2-1}{2}+1=0\)
\(\Leftrightarrow t^2+2mt+1=0\)
Pt đã cho có đúng 1 nghiệm thuộc \(\left[-1;1\right]\) khi và chỉ khi: \(\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\)
10.
\(\frac{\sqrt{3}}{2}cos5x-\frac{1}{2}sin5x=cos3x\)
\(\Leftrightarrow cos\left(5x-\frac{\pi}{6}\right)=cos3x\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{6}=3x+k2\pi\\5x-\frac{\pi}{6}=-3x+k2\pi\end{matrix}\right.\)
\(sin3x=0\Leftrightarrow3x=k\pi\)
\(\Leftrightarrow x=\frac{k\pi}{3}\)
Do \(x\in\left[0;2\pi\right]\Rightarrow0\le\frac{k\pi}{3}\le2\pi\Rightarrow0\le k\le6\)
\(\Rightarrow x=\left\{0;\frac{\pi}{3};\frac{2\pi}{3};\pi;\frac{4\pi}{3};\frac{5\pi}{3};2\pi\right\}\)
b/
\(cos4x=\frac{1}{2}+\frac{1}{2}cos6x\)
\(\Leftrightarrow2\left(2cos^22x-1\right)=1+4cos^32x-3cos2x\)
\(\Leftrightarrow4cos^32x-4cos^22x-3cos2x+3=0\)
\(\Leftrightarrow\left(cos2x-1\right)\left(4cos^22x-3\right)=0\)
\(\Leftrightarrow\left(cos2x-1\right)\left(2cos4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos4x=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+\frac{k\pi}{2}\end{matrix}\right.\)
\(\Rightarrow x=\left\{0;-\frac{11\pi}{12};-\frac{5\pi}{12};\frac{\pi}{12};\frac{7\pi}{12};-\frac{7\pi}{12};-\frac{\pi}{12};\frac{5\pi}{12};\frac{11\pi}{12}\right\}\)
Bạn tự cộng lại
c/
\(\Leftrightarrow2cos^2x-1-\left(2m+1\right)cosx+m+1=0\)
\(\Leftrightarrow2cos^2x-\left(2m+1\right)cosx+m=0\)
\(\Leftrightarrow2cos^2x-cosx-2mcosx+m=0\)
\(\Leftrightarrow cosx\left(2cosx-1\right)-m\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left(cosx-m\right)\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=m\end{matrix}\right.\)
Do \(cosx=\frac{1}{2}\) vô nghiệm trên \(\left(\frac{\pi}{2};\frac{3\pi}{2}\right)\) nên pt có nghiệm khi và chỉ khi \(cosx=m\) có nghiệm trên khoảng đã cho
Mà \(-1< cosx< 0\Rightarrow-1< m< 0\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{2}+4\pi\right)-3cos\left(x+\frac{\pi}{2}-8\pi\right)=1+2sinx\)
\(\Leftrightarrow cos2x+3sinx=1+2sinx\)
\(\Leftrightarrow1-2sin^2x+sinx=1\)
\(\Leftrightarrow sinx\left(1-2sinx\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=0\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\left\{0;\pi;2\pi;\frac{\pi}{6};\frac{5\pi}{6}\right\}\)
Có 5 nghiệm
7.
Đặt \(\left|sinx+cosx\right|=\left|\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\right|=t\Rightarrow0\le t\le\sqrt{2}\)
Ta có: \(t^2=1+2sinx.cosx\Rightarrow sinx.cosx=\frac{t^2-1}{2}\) (1)
Pt trở thành:
\(\frac{t^2-1}{2}+t=1\)
\(\Leftrightarrow t^2+2t-3=0\)
\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
Thay vào (1) \(\Rightarrow2sinx.cosx=t^2-1=0\)
\(\Leftrightarrow sin2x=0\Rightarrow x=\frac{k\pi}{2}\)
\(\Rightarrow x=\left\{\frac{\pi}{2};\pi;\frac{3\pi}{2}\right\}\Rightarrow\sum x=3\pi\)
6.
\(\Leftrightarrow\left(1-sin2x\right)+sinx-cosx=0\)
\(\Leftrightarrow\left(sin^2x+cos^2x-2sinx.cosx\right)+sinx-cosx=0\)
\(\Leftrightarrow\left(sinx-cosx\right)^2+sinx-cosx=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\sinx-cosx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x-\frac{\pi}{4}=-\frac{\pi}{4}+k\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k\pi\\x=\frac{3\pi}{2}+k\pi\end{matrix}\right.\)
Pt có 3 nghiệm trên đoạn đã cho: \(x=\left\{\frac{\pi}{4};0;\frac{\pi}{2}\right\}\)
đặt \(t=\tan x+\cot x\)
Thì PT trở thành
\(t^2-2=\dfrac{1}{2}t+1\)
\(\Leftrightarrow2t^2-t-6=0\Leftrightarrow t=2;t=-\dfrac{3}{2}\)
a) TH1 \(t=2\Leftrightarrow\tan x+\cot x=2\Leftrightarrow\tan^2x-2\tan x+1=0\)
\(\Leftrightarrow\tan x=1\Leftrightarrow x=\dfrac{\pi}{4};x=\dfrac{\pi}{4}+\pi\)(vì \(x\in\left(0;2\pi\right)\)
b) TH2:\(t=-\dfrac{3}{2}\Leftrightarrow\tan x+\dfrac{1}{\tan x}=-\dfrac{3}{2}\Leftrightarrow2\tan^2x+3\tan x+1=0\)
\(\Leftrightarrow\tan x=-1;\tan x=-\dfrac{1}{2}\)
+)\(\tan x=-1\Leftrightarrow x=-\dfrac{\pi}{4}+\pi;x=-\dfrac{\pi}{4}+2\pi\)
+) \(\tan x=-\dfrac{1}{2}\Leftrightarrow x=-0,46365+\pi;x=-0,46365+2\pi\)
Vậy trong khoảng đã cho PT có 6 No
\(cos2x=-1\Leftrightarrow2x=\pi+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{2}+k\pi\)
\(x\in\left[0;2\pi\right]\Rightarrow0\le\frac{\pi}{2}+k\pi\le2\pi\)
\(\Rightarrow-\frac{1}{2}\le k\le\frac{3}{2}\Rightarrow k=\left\{0;1\right\}\)
\(\Rightarrow x=\left\{\frac{\pi}{2};\frac{3\pi}{2}\right\}\)