K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 9 2021

\(\Leftrightarrow1+2sinx.cosx+1-cosx=2\sqrt{3}sin^2x+\left(4-\sqrt{3}\right)sinx\)

\(\Leftrightarrow cosx\left(2sinx-1\right)-\left(2\sqrt{3}sin^2x+\left(4-\sqrt{3}\right)sinx-2\right)=0\)

\(\Leftrightarrow cosx\left(2sinx-1\right)-\left(2sinx-1\right)\left(\sqrt{3}sinx+2\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(cosx+\sqrt{3}sinx+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2sinx-1=0\\\dfrac{1}{2}cosx+\dfrac{\sqrt{3}}{2}sinx=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\cos\left(x-\dfrac{\pi}{3}\right)=-1\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
27 tháng 10 2020

1.

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(m+1\right)^2+\left(-3\right)^2\ge m^2\)

\(\Leftrightarrow...\)

2.

\(\Leftrightarrow3\left(\frac{1}{2}-\frac{1}{2}cos2x\right)+4m.sin2x-4=0\)

\(\Leftrightarrow8m.sin2x-3cos2x=5\)

Pt vô nghiệm khi: \(\left(8m\right)^2+\left(-3\right)^2< 5^2\)

\(\Leftrightarrow...\)

NV
22 tháng 8 2020

\(\Leftrightarrow2cosx-sinx-4sin^2x.cosx+2sin^3x=sin^3x+cos^3x\)

\(\Leftrightarrow sin^3x-cos^3x-4sin^2x.cosx+2cosx-sinx=0\)

- Với \(\left\{{}\begin{matrix}cosx=0\\sinx=1\end{matrix}\right.\) \(\Leftrightarrow x=\frac{\pi}{2}+k2\pi\) là nghiệm của pt

- Với \(cosx\ne0\) chia 2 vế cho \(cos^3x\)

\(tan^3x-1-4tan^2x+2\left(1+tan^2x\right)-tanx\left(1+tan^2x\right)=0\)

\(\Leftrightarrow-2tan^2x-tanx+3=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-\frac{3}{2}\right)+k\pi\end{matrix}\right.\)

NV
27 tháng 11 2019

\(y=\frac{sinx-cosx}{2sinx+cosx+3}\)

\(\Leftrightarrow2y.sinx+y.cosx+3y=sinx-cosx\)

\(\Leftrightarrow\left(2y-1\right)sinx+\left(y+1\right)cosx=-3y\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(2y-1\right)^2+\left(y+1\right)^2\ge9y^2\)

\(\Leftrightarrow4y^2+2y-2\le0\Rightarrow-1\le y\le\frac{1}{2}\)

\(\Rightarrow y_{min}=-1\) khi \(sinx=-1\)