\(x^2=\left(x-4\right)\left(1+\sqrt{1+x}\right)^2\)

 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2019

\(DK:x\ge4\)

\(\Leftrightarrow x=\sqrt{x-4}\left(1+\sqrt{1+x}\right)\)

\(\Leftrightarrow x=\sqrt{x-4}+\sqrt{x^2-3x-4}\)

\(\Leftrightarrow x^2=x^2-2x-8+2\sqrt{\left(x-4\right)\left(x^2-3x-4\right)}\)

\(\Leftrightarrow x+4=\sqrt{x^3-7x^2+8x+16}\)

\(\Leftrightarrow x^2+8x+16=x^3-7x^2+8x+16\)

\(\Leftrightarrow x^3-8x^2=0\)

\(\Leftrightarrow x^2\left(x-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=8\left(n\right)\end{cases}}\)

Vay PT co mot nghiem la \(x=8\)

7 tháng 4 2017

lời giải

a)

\(\left(x+1\right)\left(2x-1\right)+x\le2x^2+3\)

\(\Leftrightarrow2x^2+x-1+x\le2x^2+3\)

\(\Leftrightarrow2x\le4\Rightarrow x\le2\)

\(\)b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)

\(\left(x^2+3x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)

\(x^3+3x^2+3x^2+9x+2x+6-x>x^3+6x^2-5\)

\(10x+6>-5\Rightarrow x>-\dfrac{11}{10}\)

8 tháng 5 2017

c)Đkxđ: x0
x+x>(2x+3)(x1)
x+x>2x+x3
x3>0
x>3. (tmđk).
 

7 tháng 4 2017

Lời giải

a) \(\sqrt{\left(x-4\right)^2\left(x+1\right)}>0\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x+1>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ne4\\x>-1\end{matrix}\right.\)

b) \(\sqrt{\left(x+2\right)^2\left(x-3\right)}>0\Rightarrow\left\{{}\begin{matrix}x\ne-2\\x-3>0\end{matrix}\right.\) \(\Rightarrow x>3\)

22 tháng 7 2016

ĐK: 2x23x40,x12x2−3x−4≥0,x≥1

PTx2+x1+2x(x1)(x+1)=2x23x4⇔x2+x−1+2x(x−1)(x+1)=2x2−3x−4

x24x3=2(x2x)(x+1)⇔x2−4x−3=2(x2−x)(x+1)

(x2x)3(x+1)=2(x2x)(x+1)⇔(x2−x)−3(x+1)=2(x2−x)(x+1)

Đặt x2x=a0,x+1=b>0x2−x=a≥0,x+1=b>0

Khi đó ta có: a23b2=2aba2−3b2=2ab

(ab)22.ab3=0⇒(ab)2−2.ab−3=0

ab=3⇔ab=3 hoặc ab=1ab=−1(loại vì a,b>0a,b>0)

ab=3x2x=3x+1

7 tháng 5 2016

Vì \(\left(2+\sqrt{2}\right)^x.2^x\left(2-\sqrt{2}\right)^x=4^x\)

nên ta đặt \(a=\left(2+\sqrt{2}\right)^x>0;b=2^x\left(2-\sqrt{2}\right)^x>0\Rightarrow a.b=4^x\)

Phương trình trở thành \(a+b=1+ab\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\Rightarrow\left[\begin{array}{nghiempt}a=1\\b=1\end{array}\right.\)

Suy ra \(\left[\begin{array}{nghiempt}\left(2+\sqrt{2}\right)^x=1\\2^x\left(2-\sqrt{2}\right)^x=1\end{array}\right.\)\(\Leftrightarrow x=0\)

Vậy nghiệm của bất phương trình đã cho là \(x=0\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng