Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
ĐK: \(x\geq 2\)
\(\sqrt{x-2}-3\sqrt{x^2-4}=0\)
\(\Leftrightarrow \sqrt{x-2}-3\sqrt{(x-2)(x+2)}=0\)
\(\Leftrightarrow \sqrt{x-2}(1-3\sqrt{x+2})=0\)
\(\Rightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x+2}=\frac{1}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=\frac{-17}{9}(\text{loại vì x}\geq 2)\end{matrix}\right.\)
Vậy $x=2$ là nghiệm của pt
2) ĐK: \(x\geq 1\)
Ta có: \(x+\sqrt{x-1}=13\)
\(\Leftrightarrow (x-1)+\sqrt{x-1}+\frac{1}{4}=\frac{49}{4}\)
\(\Leftrightarrow (\sqrt{x-1}+\frac{1}{2})^2=\frac{49}{4}\)
Vì \(\sqrt{x-1}+\frac{1}{2}>0\) nên \(\sqrt{x-1}+\frac{1}{2}=\sqrt{\frac{49}{4}}=\frac{7}{2}\)
\(\Rightarrow \sqrt{x-1}=3\)
\(\Rightarrow x=3^2+1=10\) (thỏa mãn)
Vậy.......
\(a,\)\(2x+3>5\)
\(\Rightarrow2x>5-3\)
\(\Rightarrow2x>2\)
\(\Rightarrow x>1\)
\(\frac{3}{5}x+\frac{12}{15}< 0\)
\(\Rightarrow\frac{3}{5}x+\frac{4}{5}< 0\)
\(\Rightarrow3x+4< 0\)
\(\Rightarrow3x< -4\)
\(\Rightarrow x>\frac{-4}{3}\)
\(\sqrt{16x^2+9-24x}-17=0\)
\(\Leftrightarrow\sqrt{16x^2+9-24x}=17\)
\(\Leftrightarrow16x^2-24x+9=289\)
\(\Leftrightarrow16x^2-24x-280=0\)
\(\Leftrightarrow16x^2-80x+56x-280=0\)
\(\Leftrightarrow16x\left(x-5\right)+56\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(16x+56\right)=0\)
\(\Leftrightarrow8\left(x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\2x+7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{-7}{2}\end{cases}}\)
Vậy ...