Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:...
Biến đổi đoạn trong ngoặc trước cho đỡ rối:
\(cos4x+sin2x=cos\left(3x+x\right)+sin\left(3x-x\right)\)
\(=cos3x.cosx-sin3x.sinx+sin3x.cosx-cos3x.sinx\)
\(=cosx\left(cos3x+sin3x\right)-sinx\left(cos3x+sin3x\right)\)
\(=\left(cosx-sinx\right)\left(cos3x+sin3x\right)\)
Thay vào phương trình:
\(\left(cosx-sinx\right)^2=2\left(sinx+cosx\right)+3\)
\(\Leftrightarrow1-2sinx.cosx=2\left(sinx+cosx\right)+3\)
Đặt \(sinx+cosx=a\Rightarrow-2sinx.cosx=1-a^2\)
\(2-a^2=2a+3\Rightarrow a=-1\Rightarrow sinx+cosx=-1\Rightarrow...\)
a.
\(cos\left(3x-\frac{\pi}{6}\right)=sin\left(2x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow cos\left(3x-\frac{\pi}{6}\right)=cos\left(\frac{\pi}{6}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=\frac{\pi}{6}-2x+k2\pi\\3x-\frac{\pi}{6}=2x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\cos3x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cos2x\ne\frac{1}{2}\end{matrix}\right.\)
\(tan3x-tanx=0\)
\(\Leftrightarrow\frac{sin3x}{cos3x}-\frac{sinx}{cosx}=0\)
\(\Leftrightarrow sin3x.cosx-cos3x.sinx=0\)
\(\Leftrightarrow sin2x=0\)
\(\Leftrightarrow2sinx.cosx=0\)
\(\Leftrightarrow sinx=0\Leftrightarrow x=k\pi\)
c.
\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{2\pi}{5}\right)=\frac{1}{2}-\frac{1}{2}cos\left(4x+\frac{8\pi}{5}\right)\)
\(\Leftrightarrow cos\left(2x-\frac{2\pi}{5}\right)=-cos\left(4x+\frac{3\pi}{5}+\pi\right)\)
\(\Leftrightarrow cos\left(2x-\frac{2\pi}{5}\right)=cos\left(4x+\frac{3\pi}{5}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{3\pi}{5}=2x-\frac{2\pi}{5}+k2\pi\\4x+\frac{3\pi}{5}=\frac{2\pi}{5}-2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
d.
\(\Leftrightarrow cos^2\left(2x-1\right)=0\)
\(\Leftrightarrow cos\left(2x-1\right)=0\)
\(\Leftrightarrow x=\frac{\pi}{4}+\frac{1}{2}+\frac{k\pi}{2}\)
\(\Rightarrow\sqrt{2}.sin\left(3x-\dfrac{\pi}{4}\right)-\sqrt{2}.sin\left(5x-\dfrac{\pi}{3}\right)=0\Leftrightarrow sin\left(3x-\dfrac{\pi}{4}\right)=sin\left(5x-\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{4}+k2\pi=5x-\dfrac{\pi}{3}\\\pi-3x+\dfrac{\pi}{4}+k2\pi=5x-\dfrac{\pi}{3}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{\pi}{12}+k\pi\\x=\dfrac{19\pi}{96}+\dfrac{k\pi}{4}\end{matrix}\right.\); k\(\in Z\)