\(x+\sqrt{17-x^2}+x\sqrt{17-x^2}=9\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2016

Đk:\(-\sqrt{17}\le x\le\sqrt{17}\)

Đặt \(t=x+\sqrt{17-x^2}\left(t>0\right)\)

\(\Rightarrow t^2=17+2x\sqrt{17-x^2}\)

\(\Rightarrow x\sqrt{17-x^2}=\frac{t^2-17}{2}\)

thay vào pt 

\(t+\frac{t^2-17}{2}=9\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=-7\left(loai\right)\\t=5\left(tm\right)\end{array}\right.\)

\(\Rightarrow x+\sqrt{17-x^2}=5\)

\(\Leftrightarrow\sqrt{17-x^2}=5-x\)

Với \(x< \sqrt{17}\) bình 2 vế ta có:

\(17-x^2=x^2-10x+25\)

\(\Leftrightarrow2x^2-10x+8=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=4\end{cases}\left(tm\right)}\)

 

1 tháng 10 2016

dòng cuối là \(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=4\end{array}\right.\)(thỏa mãn)

6 tháng 7 2019

câu a

Học tại nhà - Toán - Bài 110035

6 tháng 7 2019

b,  ĐK \(x\ge-4\)

PT 

<=> \(\left(x-\sqrt{x+4}\right)+\left(\sqrt{2x^2-10x+17}-2x+3\right)=0\)

<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}+\frac{-2x^2+2x+8}{\sqrt{2x^2-10x+17}+2x-3}=0\)với \(x+\sqrt{x+4}\ne0\)

<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}-\frac{2\left(x^2-x-4\right)}{\sqrt{2x^2-10x+17}+2x-3}=0\)

<=> \(\orbr{\begin{cases}x^2-x-4=0\\\frac{1}{x+\sqrt{x+4}}-\frac{2}{\sqrt{2x^2-10x+17}+2x-3}=0\left(2\right)\end{cases}}\)

Giải (2)

=> \(2x+2\sqrt{x+4}=2x-3+\sqrt{2x^2-10x+17}\)

<=> \(\sqrt{2x^2-10x+17}=2\sqrt{x+4}+3\)

<=> \(2x^2-10x+17=4\left(x+4\right)+9+12\sqrt{x+4}\)

<=> \(x^2-7x-4=6\sqrt{x+4}\)

<=> \(\left(x-6\right)^2+5x-40=6\sqrt{6\left(x-6\right)-5x+40}\)

Đặt x-6=a;\(\sqrt{6\left(x-6\right)-5x+40}=b\)

=> \(\hept{\begin{cases}a^2+5x-40=6b\\b^2+5x-40=6a\end{cases}}\)

=> \(a^2-b^2+6\left(a-b\right)=0\)

<=> \(\orbr{\begin{cases}a=b\\a+b+6=0\end{cases}}\)

+ a=b

=> \(x-6=\sqrt{x+4}\)

=> \(\hept{\begin{cases}x\ge6\\x^2-13x+32=0\end{cases}}\)=> \(x=\frac{13+\sqrt{41}}{2}\)

+ a+b+6=0

=> \(x+\sqrt{x+4}=0\)(loại)

Vậy \(S=\left\{\frac{13+\sqrt{41}}{2};\frac{1+\sqrt{17}}{2}\right\}\)

NV
26 tháng 11 2019

ĐKXĐ: ....

Đặt \(x+\sqrt{17-x^2}=a\ge-\sqrt{17}\Rightarrow x\sqrt{17-x^2}=\frac{a^2-17}{2}\)

Phương trình trở thành:

\(a+\frac{a^2-17}{2}=9\Leftrightarrow a^2+2a-35=0\Rightarrow\left[{}\begin{matrix}a=5\\a=-7\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x+\sqrt{17-x^2}=5\)

\(\Leftrightarrow\sqrt{17-x^2}=5-x\)

\(\Leftrightarrow17-x^2=x^2-10x+25\)

\(\Leftrightarrow2x^2-10x+8=0\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
10 tháng 3 2018

Lời giải:

ĐKXĐ:......

Ta có: Đặt \(y=\sqrt{17-x^2}\Rightarrow x^2+y^2=17\)

Ta chuyển phương trình về hệ phương trình:

\(\left\{\begin{matrix} x+y+xy=9\\ x^2+y^2=17\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy=9-(x+y)\\ (x+y)^2-2xy=17\end{matrix}\right.\)

\(\Rightarrow (x+y)^2-2[9-(x+y)]=17\)

\(\Leftrightarrow (x+y)^2+2(x+y)-35=0\)

\(\Leftrightarrow (x+y-5)(x+y+7)=0\)

Nếu \(x+y=5\Rightarrow xy=9-5=4\)

Theo định lý Viete đảo thì $x,y$ là nghiệm của PT: \(X^2-5X+4=0\)

\(\Rightarrow (x,y)=(1,4)\Leftrightarrow (x,\sqrt{17-x^2})=(1,4)\)

\(\Rightarrow x=1\)

Nếu \(x+y=-7\Rightarrow xy=9-(-7)=16\)

Vì \(x+y<0; y\geq 0\Rightarrow x< 0\Rightarrow xy\leq 0\Leftrightarrow 16\leq 0\) (vô lý nên loại)

Vậy \(x=1\)

18 tháng 6 2018

Định lý Viete là đ/lý gì vậy

21 tháng 5 2017

đây là PT sao lại giải BPT?

21 tháng 5 2017

sorry mih ghi nhầm bn ạ mà chẳng wan trọng lắm đâu bn cứ tập trung mà giải hộ mình cái phương trình ấy