\(\sqrt{6x+3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 2 2020

ĐKXĐ: ...

\(\Leftrightarrow18x^2-9x\sqrt{6x+3}+6x+3=0\)

\(\Leftrightarrow\left(3x-\sqrt{6x+3}\right)\left(6x-\sqrt{6x+3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{6x+3}=3x\\\sqrt{6x+3}=9x\end{matrix}\right.\) \(x\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}9x^2-6x-3=0\\81x^2-6x-3=0\end{matrix}\right.\)

27 tháng 11 2019

a/ ĐKXĐ:...

Đặt \(\sqrt{x^2-6x+6}=t\Rightarrow t^2=x^2-6x+6\Leftrightarrow t^2+3=x^2-6x+9\)

\(\Rightarrow t^2+3=4t\Leftrightarrow t^2-4t+3=0\Leftrightarrow\left[{}\begin{matrix}t=3\\t=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2-6x+6=9\\x^2-6x+6=1\end{matrix}\right.\)

Bạn tự giải nốt và đối chiếu ĐKXĐ

27 tháng 11 2019

Mouse's Highen's Bạn xem lại hộ mk đề bài câu b đi. Thấy đáng lẽ phải như thế này:

\(\sqrt{2x+3}+\sqrt{x+1}=3x+4\)

20 tháng 5 2020

em cám ơn thầy nhiều

NV
20 tháng 5 2020

\(\Leftrightarrow x^2+3-\left(6x+1\right)\sqrt{x^2+3}+9x^2+3x-2=0\)

Đặt \(\sqrt{x^2+3}=t\)

\(\Rightarrow t^2-\left(6x+1\right)t+9x^2+3x-2=0\)

\(\Delta=\left(6x+1\right)^2-4\left(9x^2+3x-2\right)=9\)

\(\Rightarrow\left[{}\begin{matrix}t=\frac{6x+1+3}{2}=3x+2\\t=\frac{6x+1-3}{2}=3x-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2}=3x+2\left(x\ge-\frac{2}{3}\right)\\\sqrt{x^2+2}=3x-1\left(x\ge\frac{1}{3}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2=\left(3x+2\right)^2\\x^2+2=\left(3x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow...\)

10 tháng 11 2016

b) X=5

10 tháng 11 2016

Tính kiểu gì vậy.......

5 tháng 3 2019

1) Phương trình đã cho tương đương

\(\Leftrightarrow\left(x-2\right)\left(3\sqrt{x^2+1}-x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x=\frac{3}{4}\end{matrix}\right.\)