Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
Đk: \(x\ge2\)
pt <=> \(\frac{4\left(x+2\right)-\left(4x+1\right)}{2\sqrt{x+2}+\sqrt{4x+1}}\left(2x+3+\sqrt{4x^2+9x+2}\right)=7\)
<=> \(\frac{7}{2\sqrt{x+2}+\sqrt{4x+1}}\left(2x+3+\sqrt{4x^2+9x+2}\right)=7\)
<=> \(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)(1)
Đặt : \(t=2\sqrt{x+2}+\sqrt{4x+1}\ge0\)
Ta có: \(t^2=8x+9+4\sqrt{4x^2+9x+2}\)<=> \(2x+3+\sqrt{4x^2+9x+2}=\frac{t^2+3}{4}\)
Phương trình (1) trở thành: \(\frac{t^2+3}{4}=t\Leftrightarrow t^2-4t+3=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=1\end{cases}\left(tm\right)}\)
+) Với t = 1. Ta có:
\(2\sqrt{x+2}+\sqrt{4x+1}=1\)
<=> \(8x+9+4\sqrt{4x^2+9x+2}=1\)
<=> \(\sqrt{4x^2+9x+2}=-2-2x\)
<=> \(\hept{\begin{cases}-2-2x\ge0\\4x^2+9x+2=4x^2+8x+4\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le-1\\x=2\end{cases}}\)loại
+) Với t = 3. Ta có:
\(2\sqrt{x+2}+\sqrt{4x+1}=3\)
<=> \(8x+9+4\sqrt{4x^2+9x+2}=9\)
<=> \(\sqrt{4x^2+9x+2}=-2x\)
<=> \(\hept{\begin{cases}-2x\ge0\\4x^2+9x+2=4x^2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le0\\9x+2=0\end{cases}}\Leftrightarrow x=-\frac{2}{9}\left(tmdk\right)\)
Vây:...
ĐK \(x\ge\frac{-1}{4}\)
Với điều kiện đó ta có \(2\sqrt{x+2}+\sqrt{4x+1}>0\)
Biến đổi phương trình đã cho trở thành
\(7\left(2x+3+\sqrt{4x^2+9x+2}\right)7\left(2\sqrt{x+2}+\sqrt{4x+1}\right)\)
\(\Leftrightarrow2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\left(1\right)\)
Đặt \(t=2\sqrt{x+2}+\sqrt{4x+1}\left(t\ge\sqrt{7}\right)\)
\(t^2=8x+9+4\sqrt{4x^2+9x+2}\Rightarrow2x+\sqrt{4x^2+9x+2}=\frac{t^2-9}{4}\)
Thay vào (1) ta được \(t^2-4t+3=0\Leftrightarrow\orbr{\begin{cases}t=1\left(ktm\right)\\t=3\left(tm\right)\end{cases}}\)
Với t=3 ta có:\(2\sqrt{x+2}+\sqrt{4x+1}=3\)giải ra ta được \(x=\frac{-2}{9}\left(tm\right)\)
Vậy pt có 1 nghiệm duy nhất \(x=-\frac{2}{9}\)
Em xin phép làm bài EZ nhất :)
4,ĐK :\(\forall x\in R\)
Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))
\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)
\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)
\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy ....
Câu 2: ĐK..............
PT $(1)\Rightarrow \sqrt{y+1}=\frac{x-3}{2}$
$\Rightarrow y+1=\frac{(x-3)^2}{4}$
PT $(2)\Leftrightarrow x^3-4x^2\sqrt{y+1}+4x(y+1)-8(y+1)-9x+60=0$
$\Leftrightarrow x^3-4x^2.\frac{x-3}{2}+4x.\frac{(x-3)^2}{4}-8.\frac{(x-3)^2}{4}-9x+60=0$
$\Leftrightarrow x^3-2x^2(x-3)+x(x-3)^2-2(x-3)^2-9x+60=0$
$\Leftrightarrow -x^2+6x+7=0$
$\Leftrightarrow x=7$ hoặc $x=-1$
Từ PT $(1)$ dễ thấy $x\geq 3$ nên $x=7$
$\Rightarrow y=\frac{(x-3)^2}{4}=4$
Vậy...........
Câu 1:
ĐK:..............
PT $\Leftrightarrow x-3+\sqrt{x-1}=\sqrt{2(x^2-5x+5)}$
$\Rightarrow (x-3+\sqrt{x-1})^2=2(x^2-5x+5)$
$\Leftrightarrow 2(x-3)\sqrt{x-1}=x^2-5x+2$
$\Leftrightarrow x^2-5x+2-2(x-3)\sqrt{x-1}=0$
$\Leftrightarrow (x^2-6x+9)+(x-1)-2(x-3)\sqrt{x-1}=6$
$\Leftrightarrow (x-3)^2+(x-1)-2(x-3)\sqrt{x-1}=6$
$\Leftrightarrow (x-3-\sqrt{x-1})^2=6$
$\Leftrightarrow x-3-\sqrt{x-1}=\pm \sqrt{6}$
$\Leftrightarrow \sqrt{x-1}=x-3\pm \sqrt{6}$
$\Rightarrow x-1=(x-3\pm \sqrt{6})^2$ (ĐK: $x\geq 3\pm \sqrt{6}$)
Giải PT ta thu được $x=\frac{1}{2}(7+2\sqrt{6}+\sqrt{9+4\sqrt{6}})$
mk làm mất tờ đấy r k chụp lại đc hihi